Cargando…
MicroRNA-372 inhibits endometrial carcinoma development by targeting the expression of the Ras homolog gene family member C (RhoC)
Here we explore the role of microRNA-372 (miR-372) in tumorigenesis and development of endometrial adenocarcinoma (EC) and analyze the underlying mechanism. We found that miR-372 expression is much lower in EC than normal endometrial specimens. Cell function experiments demonstrated that miR-372 ove...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872740/ https://www.ncbi.nlm.nih.gov/pubmed/26673619 http://dx.doi.org/10.18632/oncotarget.6544 |
Sumario: | Here we explore the role of microRNA-372 (miR-372) in tumorigenesis and development of endometrial adenocarcinoma (EC) and analyze the underlying mechanism. We found that miR-372 expression is much lower in EC than normal endometrial specimens. Cell function experiments demonstrated that miR-372 overexpression suppressed cell proliferation, migration, and invasion, and led to a G1 phase arrest and promoted the apoptosis of endometrial carcinoma cells in vitro. The nude mouse xenograft assay demonstrated that miR-372 overexpression suppressed tumor growth. RT-PCR and Western blot assays detected the expression of known targets of miR-372 in other malignant tumors and found Cyclin A1 and Cyclin-dependent Kinase 2 (CDK2) was downregulated by miR-372. Bioinformatic predictions and dual-luciferase reporter assays found that RhoC was a possible target of miR-372. RT-PCR and Western blot assays demonstrated that miR-372 transfection reduced the expression of RhoC, matrix metalloproteinase 2 (MMP2) and MMP9, while it increased the expression of cleaved poly (ADP ribose) polymerase (PARP) and bcl-2-associated X protein (Bax). The cell function experiments that transfected siRNA with RhoC showed the same trend as those which were transfected with miR-372. Taken together, our results demonstrated for the first time that miR-372 suppresses tumorigenesis and the development of EC; RhoC is a new and potentially important therapeutic target. |
---|