Cargando…

Where to Go: Breaking the Symmetry in Cell Motility

Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex sy...

Descripción completa

Detalles Bibliográficos
Autor principal: Huang, Sui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873176/
https://www.ncbi.nlm.nih.gov/pubmed/27196433
http://dx.doi.org/10.1371/journal.pbio.1002463
Descripción
Sumario:Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology.