Cargando…

Genetic Analysis of PLA2G6 in 22 Indian Families with Infantile Neuroaxonal Dystrophy, Atypical Late-Onset Neuroaxonal Dystrophy and Dystonia Parkinsonism Complex

Mutations in PLA2G6 were identified in patients with a spectrum of neurodegenerative conditions, such as infantile neuroaxonal dystrophy (INAD), atypical late-onset neuroaxonal dystrophy (ANAD) and dystonia parkinsonism complex (DPC). However, there is no report on the genetic analysis of families w...

Descripción completa

Detalles Bibliográficos
Autores principales: Kapoor, Saketh, Shah, Mohd Hussain, Singh, Nivedita, Rather, Mohammad Iqbal, Bhat, Vishwanath, Gopinath, Sindhura, Bindu, Parayil Sankaran, Taly, Arun B., Sinha, Sanjib, Nagappa, Madhu, Bharath, Rose Dawn, Mahadevan, Anita, Narayanappa, Gayathri, Chickabasaviah, Yasha T., Kumar, Arun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873246/
https://www.ncbi.nlm.nih.gov/pubmed/27196560
http://dx.doi.org/10.1371/journal.pone.0155605
Descripción
Sumario:Mutations in PLA2G6 were identified in patients with a spectrum of neurodegenerative conditions, such as infantile neuroaxonal dystrophy (INAD), atypical late-onset neuroaxonal dystrophy (ANAD) and dystonia parkinsonism complex (DPC). However, there is no report on the genetic analysis of families with members affected with INAD, ANAD and DPC from India. Therefore, the main aim of this study was to perform genetic analysis of 22 Indian families with INAD, ANAD and DPC. DNA sequence analysis of the entire coding region of PLA2G6 identified 13 different mutations, including five novel ones (p.Leu224Pro, p.Asp283Asn, p.Arg329Cys, p.Leu491Phe, and p.Arg649His), in 12/22 (54.55%) families with INAD and ANAD. Interestingly, one patient with INAD was homozygous for two different mutations, p.Leu491Phe and p.Ala516Val, and thus harboured four mutant alleles. With these mutations, the total number of mutations in this gene reaches 129. The absence of mutations in 10/22 (45.45%) families suggests that the mutations could be in deep intronic or promoter regions of this gene or these families could have mutations in a yet to be identified gene. The present study increases the mutation landscape of PLA2G6. The present finding will be useful for genetic diagnosis, carrier detection and genetic counselling to families included in this study and other families with similar disease condition.