Cargando…
Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling
Conduction abnormalities are frequently associated with cardiac disease, though the mechanisms underlying the commonly associated increases in PQ interval are not known. This study uses a chronic left ventricular (LV) apex myocardial infarction (MI) model in the rabbit to create significant left ven...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873602/ https://www.ncbi.nlm.nih.gov/pubmed/27021518 http://dx.doi.org/10.1016/j.yjmcc.2016.03.011 |
_version_ | 1782432910400290816 |
---|---|
author | Nisbet, Ashley M. Camelliti, Patrizia Walker, Nicola L. Burton, Francis L. Cobbe, Stuart M. Kohl, Peter Smith, Godfrey L. |
author_facet | Nisbet, Ashley M. Camelliti, Patrizia Walker, Nicola L. Burton, Francis L. Cobbe, Stuart M. Kohl, Peter Smith, Godfrey L. |
author_sort | Nisbet, Ashley M. |
collection | PubMed |
description | Conduction abnormalities are frequently associated with cardiac disease, though the mechanisms underlying the commonly associated increases in PQ interval are not known. This study uses a chronic left ventricular (LV) apex myocardial infarction (MI) model in the rabbit to create significant left ventricular dysfunction (LVD) 8 weeks post-MI. In vivo studies established that the PQ interval increases by approximately 7 ms (10%) with no significant change in average heart rate. Optical mapping of isolated Langendorff perfused rabbit hearts recapitulated this result: time to earliest activation of the LV was increased by 14 ms (16%) in the LVD group. Intra-atrial and LV transmural conduction times were not altered in the LVD group. Isolated AVN preparations from the LVD group demonstrated a significantly longer conduction time (by approximately 20 ms) between atrial and His electrograms than sham controls across a range of pacing cycle lengths. This difference was accompanied by increased effective refractory period and Wenckebach cycle length, suggesting significantly altered AVN electrophysiology post-MI. The AVN origin of abnormality was further highlighted by optical mapping of the isolated AVN. Immunohistochemistry of AVN preparations revealed increased fibrosis and gap junction protein (connexin43 and 40) remodelling in the AVN of LVD animals compared to sham. A significant increase in myocyte–non-myocyte connexin co-localization was also observed after LVD. These changes may increase the electrotonic load experienced by AVN muscle cells and contribute to slowed conduction velocity within the AVN. |
format | Online Article Text |
id | pubmed-4873602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-48736022016-05-23 Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling Nisbet, Ashley M. Camelliti, Patrizia Walker, Nicola L. Burton, Francis L. Cobbe, Stuart M. Kohl, Peter Smith, Godfrey L. J Mol Cell Cardiol Article Conduction abnormalities are frequently associated with cardiac disease, though the mechanisms underlying the commonly associated increases in PQ interval are not known. This study uses a chronic left ventricular (LV) apex myocardial infarction (MI) model in the rabbit to create significant left ventricular dysfunction (LVD) 8 weeks post-MI. In vivo studies established that the PQ interval increases by approximately 7 ms (10%) with no significant change in average heart rate. Optical mapping of isolated Langendorff perfused rabbit hearts recapitulated this result: time to earliest activation of the LV was increased by 14 ms (16%) in the LVD group. Intra-atrial and LV transmural conduction times were not altered in the LVD group. Isolated AVN preparations from the LVD group demonstrated a significantly longer conduction time (by approximately 20 ms) between atrial and His electrograms than sham controls across a range of pacing cycle lengths. This difference was accompanied by increased effective refractory period and Wenckebach cycle length, suggesting significantly altered AVN electrophysiology post-MI. The AVN origin of abnormality was further highlighted by optical mapping of the isolated AVN. Immunohistochemistry of AVN preparations revealed increased fibrosis and gap junction protein (connexin43 and 40) remodelling in the AVN of LVD animals compared to sham. A significant increase in myocyte–non-myocyte connexin co-localization was also observed after LVD. These changes may increase the electrotonic load experienced by AVN muscle cells and contribute to slowed conduction velocity within the AVN. Academic Press 2016-05 /pmc/articles/PMC4873602/ /pubmed/27021518 http://dx.doi.org/10.1016/j.yjmcc.2016.03.011 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Nisbet, Ashley M. Camelliti, Patrizia Walker, Nicola L. Burton, Francis L. Cobbe, Stuart M. Kohl, Peter Smith, Godfrey L. Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling |
title | Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling |
title_full | Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling |
title_fullStr | Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling |
title_full_unstemmed | Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling |
title_short | Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling |
title_sort | prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: role of fibrosis and connexin remodelling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873602/ https://www.ncbi.nlm.nih.gov/pubmed/27021518 http://dx.doi.org/10.1016/j.yjmcc.2016.03.011 |
work_keys_str_mv | AT nisbetashleym prolongationofatrioventricularnodeconductioninarabbitmodelofischaemiccardiomyopathyroleoffibrosisandconnexinremodelling AT camellitipatrizia prolongationofatrioventricularnodeconductioninarabbitmodelofischaemiccardiomyopathyroleoffibrosisandconnexinremodelling AT walkernicolal prolongationofatrioventricularnodeconductioninarabbitmodelofischaemiccardiomyopathyroleoffibrosisandconnexinremodelling AT burtonfrancisl prolongationofatrioventricularnodeconductioninarabbitmodelofischaemiccardiomyopathyroleoffibrosisandconnexinremodelling AT cobbestuartm prolongationofatrioventricularnodeconductioninarabbitmodelofischaemiccardiomyopathyroleoffibrosisandconnexinremodelling AT kohlpeter prolongationofatrioventricularnodeconductioninarabbitmodelofischaemiccardiomyopathyroleoffibrosisandconnexinremodelling AT smithgodfreyl prolongationofatrioventricularnodeconductioninarabbitmodelofischaemiccardiomyopathyroleoffibrosisandconnexinremodelling |