Cargando…
Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP
Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventiona...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873626/ https://www.ncbi.nlm.nih.gov/pubmed/27186980 http://dx.doi.org/10.1038/ncomms11615 |
_version_ | 1782432915593887744 |
---|---|
author | Arnold, Frank Shekhar, Chandra Wu, Shu-Chun Sun, Yan dos Reis, Ricardo Donizeth Kumar, Nitesh Naumann, Marcel Ajeesh, Mukkattu O. Schmidt, Marcus Grushin, Adolfo G. Bardarson, Jens H. Baenitz, Michael Sokolov, Dmitry Borrmann, Horst Nicklas, Michael Felser, Claudia Hassinger, Elena Yan, Binghai |
author_facet | Arnold, Frank Shekhar, Chandra Wu, Shu-Chun Sun, Yan dos Reis, Ricardo Donizeth Kumar, Nitesh Naumann, Marcel Ajeesh, Mukkattu O. Schmidt, Marcus Grushin, Adolfo G. Bardarson, Jens H. Baenitz, Michael Sokolov, Dmitry Borrmann, Horst Nicklas, Michael Felser, Claudia Hassinger, Elena Yan, Binghai |
author_sort | Arnold, Frank |
collection | PubMed |
description | Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample. |
format | Online Article Text |
id | pubmed-4873626 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48736262016-06-02 Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP Arnold, Frank Shekhar, Chandra Wu, Shu-Chun Sun, Yan dos Reis, Ricardo Donizeth Kumar, Nitesh Naumann, Marcel Ajeesh, Mukkattu O. Schmidt, Marcus Grushin, Adolfo G. Bardarson, Jens H. Baenitz, Michael Sokolov, Dmitry Borrmann, Horst Nicklas, Michael Felser, Claudia Hassinger, Elena Yan, Binghai Nat Commun Article Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample. Nature Publishing Group 2016-05-17 /pmc/articles/PMC4873626/ /pubmed/27186980 http://dx.doi.org/10.1038/ncomms11615 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Arnold, Frank Shekhar, Chandra Wu, Shu-Chun Sun, Yan dos Reis, Ricardo Donizeth Kumar, Nitesh Naumann, Marcel Ajeesh, Mukkattu O. Schmidt, Marcus Grushin, Adolfo G. Bardarson, Jens H. Baenitz, Michael Sokolov, Dmitry Borrmann, Horst Nicklas, Michael Felser, Claudia Hassinger, Elena Yan, Binghai Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP |
title | Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP |
title_full | Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP |
title_fullStr | Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP |
title_full_unstemmed | Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP |
title_short | Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP |
title_sort | negative magnetoresistance without well-defined chirality in the weyl semimetal tap |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873626/ https://www.ncbi.nlm.nih.gov/pubmed/27186980 http://dx.doi.org/10.1038/ncomms11615 |
work_keys_str_mv | AT arnoldfrank negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT shekharchandra negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT wushuchun negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT sunyan negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT dosreisricardodonizeth negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT kumarnitesh negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT naumannmarcel negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT ajeeshmukkattuo negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT schmidtmarcus negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT grushinadolfog negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT bardarsonjensh negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT baenitzmichael negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT sokolovdmitry negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT borrmannhorst negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT nicklasmichael negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT felserclaudia negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT hassingerelena negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap AT yanbinghai negativemagnetoresistancewithoutwelldefinedchiralityintheweylsemimetaltap |