Cargando…
Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition
The activity of electrocatalysts exhibits a strongly dependence on their electronic structures. Specifically, for perovskite oxides, Shao-Horn and co-workers have reported a correlation between the oxygen evolution reaction activity and the e(g) orbital occupation of transition-metal ions, which pro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873645/ https://www.ncbi.nlm.nih.gov/pubmed/27187067 http://dx.doi.org/10.1038/ncomms11510 |
Sumario: | The activity of electrocatalysts exhibits a strongly dependence on their electronic structures. Specifically, for perovskite oxides, Shao-Horn and co-workers have reported a correlation between the oxygen evolution reaction activity and the e(g) orbital occupation of transition-metal ions, which provides guidelines for the design of highly active catalysts. Here we demonstrate a facile method to engineer the e(g) filling of perovskite cobaltite LaCoO(3) for improving the oxygen evolution reaction activity. By reducing the particle size to ∼80 nm, the e(g) filling of cobalt ions is successfully increased from unity to near the optimal configuration of 1.2 expected by Shao-Horn's principle. Consequently, the activity is significantly enhanced, comparable to those of recently reported cobalt oxides with e(g)(∼1.2) configurations. This enhancement is ascribed to the emergence of spin-state transition from low-spin to high-spin states for cobalt ions at the surface of the nanoparticles, leading to more active sites with increased reactivity. |
---|