Cargando…
Comparison of viability and antioxidant capacity between canine adipose-derived mesenchymal stem cells and heme oxygenase-1-overexpressed cells after freeze-thawing
Allogenic adipose-derived mesenchymal stem cells (Ad-MSCs) are an alternative source for cytotherapy owing to their antioxidant and anti-inflammatory effects. Frozen-thawed allogenic Ad-MSCs can be used instantly for this purpose. However, the viability and function of frozen-thawed Ad-MSCs have not...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japanese Society of Veterinary Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873853/ https://www.ncbi.nlm.nih.gov/pubmed/26725542 http://dx.doi.org/10.1292/jvms.15-0361 |
Sumario: | Allogenic adipose-derived mesenchymal stem cells (Ad-MSCs) are an alternative source for cytotherapy owing to their antioxidant and anti-inflammatory effects. Frozen-thawed allogenic Ad-MSCs can be used instantly for this purpose. However, the viability and function of frozen-thawed Ad-MSCs have not been clearly evaluated. The purpose of this study was to compare the viability and function of Ad-MSCs and heme oxygenase-1 (HO-1)-overexpressed Ad-MSCs in vitro after freeze-thawing. The viability, proliferation, antioxidant capacity and mRNA gene expression of growth factors were evaluated. Frozen-thawed cells showed significantly lower viability than fresh cells (77% for Ad-MSCs and 71% for HO-1 Ad-MSCs, P<0.01). However, the proliferation rate of frozen-thawed Ad-MSCs increased and did not differ from that of fresh Ad-MSCs after 3 days of culture. In contrast, the proliferation rate of HO-1-overexpressed Ad-MSCs was lower than that of Ad-MSCs. The mRNA expression levels of TGF-β, HGF and VEGF did not differ between fresh and frozen-thawed Ad-MSCs, but COX-2 and IL-6 had significantly higher mRNA expression in frozen cells than fresh cells (P<0.05). Fresh Ad-MSCs exhibited higher HO-1 mRNA expression than frozen-thawed Ad-MSCs, and fresh HO-1-overexpressed Ad-MSCs exhibited higher than fresh Ad-MSCs (P<0.05). However, there was no significant difference between fresh and frozen HO-1-overexpressed Ad-MSCs. The antioxidant capacity of HO-1-overexpressed Ad-MSCs was significantly higher than that of Ad-MSCs. Cryopreservation of Ad-MSCs negatively affects viability and antioxidant capacity, and HO-1-overexpressed Ad-MSCs might be useful to maximize the effect of Ad-MSCs for cytotherapy. |
---|