Cargando…

Natural genetic variability reduces recalcitrance in poplar

BACKGROUND: Lignin content and structure are known to affect recalcitrance of lignocellulosic biomass to chemical/biochemical conversion. Previously, we identified rare Populus trichocarpa natural variants with significantly reduced lignin content. Because reduced lignin content may lower recalcitra...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhagia, Samarthya, Muchero, Wellington, Kumar, Rajeev, Tuskan, Gerald A., Wyman, Charles E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874023/
https://www.ncbi.nlm.nih.gov/pubmed/27213013
http://dx.doi.org/10.1186/s13068-016-0521-2
Descripción
Sumario:BACKGROUND: Lignin content and structure are known to affect recalcitrance of lignocellulosic biomass to chemical/biochemical conversion. Previously, we identified rare Populus trichocarpa natural variants with significantly reduced lignin content. Because reduced lignin content may lower recalcitrance, 18 rare variants along with 4 comparators, and BESC standard Populus was analyzed for composition of structural carbohydrates and lignin. Sugar yields from these plants were measured at 5 process conditions: one for just enzymatic hydrolysis without pretreatment and four via our combined high-throughput hot water pretreatment and co-hydrolysis (HTPH) technique. RESULTS: Mean of glucan + xylan yields and the best glucan + xylan yield from rare natural poplar variants were 34 and 50 relative percent higher than the high lignin comparator (BESC-316) at the highest severity HTPH condition, respectively. The ability of HTPH to solubilize a large portion of xylan from solids led to small differences in xylan yields among poplar variants. However, HTPH showed large differences in glucan yields, and hence glucan + xylan yields, among the poplar variants. The high lignin comparator did not display lowest glucan + xylan yields with HTPH at moderate pretreatment severity compared to rare variants, but on the other hand, the low lignin comparator was a consistent top performer at all 5 process conditions. Furthermore, the low lignin comparator (GW-11012) showed a 15 absolute percent increase in glucan + xylan yield compared to the high lignin comparator at the most severe HTPH condition. Overall, relative variant rankings varied greatly with pretreatment severity, but poplar deconstruction was significantly enhanced when the pretreatment temperature was increased from 140 and 160 to 180 °C at the same pretreatment severity factor. CONCLUSIONS: Glucan yields from high severity HTPH of rare natural poplar variants with reduced lignin content were significantly higher than from the high lignin comparator. Because of the significant effect of processing conditions on the performance rankings, selection of the best performing biofuel feedstocks should be based on sugar yields tested at conditions that represent industrial practice. From a feedstock perspective, the most consistent variants, SKWE-24-2 and GW-11012, provide key insights into the genetic improvement of versatile lignocellulosic biofuels feedstock varieties. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-016-0521-2) contains supplementary material, which is available to authorized users.