Cargando…
Intra-Arterially Delivered Mesenchymal Stem Cells Are Not Detected in the Brain Parenchyma in an Alzheimer’s Disease Mouse Model
Mesenchymal stem cells (MSCs) have a promising role as a therapeutic agent for neurodegenerative diseases such as Alzheimer’s disease (AD). Prior studies suggested that intra-arterially administered MSCs are engrafted into the brain in stroke or traumatic brain injury (TBI) animal models. However, a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874686/ https://www.ncbi.nlm.nih.gov/pubmed/27203695 http://dx.doi.org/10.1371/journal.pone.0155912 |
Sumario: | Mesenchymal stem cells (MSCs) have a promising role as a therapeutic agent for neurodegenerative diseases such as Alzheimer’s disease (AD). Prior studies suggested that intra-arterially administered MSCs are engrafted into the brain in stroke or traumatic brain injury (TBI) animal models. However, a controversial standpoint exists in terms of the integrity of the blood brain barrier (BBB) in transgenic AD mice. The primary goal of this study was to explore the feasibility of delivering human umbilical cord-blood derived mesenchymal stem cells (hUCB-MSCs) into the brains of non-transgenic WT (C3H/C57) and transgenic AD (APP/PS1) mice through the intra-arterial (IA) route. Through two experiments, mice were infused with hUCB-MSCs via the right internal carotid artery and were sacrificed at two different time points: 6 hours (experiment 1) or 5 minutes (experiment 2) after infusion. In both experiments, no cells were detected in the brain parenchyma while MSCs were detected in the cerebrovasculature in experiment 2. The results from this study highlight that intra-arterial delivery of MSCs is not the most favorable route to be implemented as a potential therapeutic approach for AD. |
---|