Cargando…

A new bats echolocation-based algorithm for single objective optimisation

Bats sonar algorithm (BSA) as a swarm intelligence approach utilises the concept of echolocation of bats to find prey. However, the algorithm is unable to achieve good precision and fast convergence rate to the optimum solution. With this in mind, an adaptive bats sonar algorithm is introduced with...

Descripción completa

Detalles Bibliográficos
Autores principales: Yahya, Nafrizuan Mat, Tokhi, M. Osman, Kasdirin, Hyreil Anuar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4875172/
https://www.ncbi.nlm.nih.gov/pubmed/27340501
http://dx.doi.org/10.1007/s12065-016-0134-5
_version_ 1782433106386485248
author Yahya, Nafrizuan Mat
Tokhi, M. Osman
Kasdirin, Hyreil Anuar
author_facet Yahya, Nafrizuan Mat
Tokhi, M. Osman
Kasdirin, Hyreil Anuar
author_sort Yahya, Nafrizuan Mat
collection PubMed
description Bats sonar algorithm (BSA) as a swarm intelligence approach utilises the concept of echolocation of bats to find prey. However, the algorithm is unable to achieve good precision and fast convergence rate to the optimum solution. With this in mind, an adaptive bats sonar algorithm is introduced with new paradigms of real bats echolocation behaviour. The performance of the algorithm is validated through rigorous tests with several single objective optimisation benchmark test functions. The obtained results show that the proposed scheme outperforms the BSA in terms of accuracy and convergence speed and can be efficiently employed to solve engineering problems.
format Online
Article
Text
id pubmed-4875172
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-48751722016-06-21 A new bats echolocation-based algorithm for single objective optimisation Yahya, Nafrizuan Mat Tokhi, M. Osman Kasdirin, Hyreil Anuar Evol Intell Research Paper Bats sonar algorithm (BSA) as a swarm intelligence approach utilises the concept of echolocation of bats to find prey. However, the algorithm is unable to achieve good precision and fast convergence rate to the optimum solution. With this in mind, an adaptive bats sonar algorithm is introduced with new paradigms of real bats echolocation behaviour. The performance of the algorithm is validated through rigorous tests with several single objective optimisation benchmark test functions. The obtained results show that the proposed scheme outperforms the BSA in terms of accuracy and convergence speed and can be efficiently employed to solve engineering problems. Springer Berlin Heidelberg 2016-02-18 2016 /pmc/articles/PMC4875172/ /pubmed/27340501 http://dx.doi.org/10.1007/s12065-016-0134-5 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research Paper
Yahya, Nafrizuan Mat
Tokhi, M. Osman
Kasdirin, Hyreil Anuar
A new bats echolocation-based algorithm for single objective optimisation
title A new bats echolocation-based algorithm for single objective optimisation
title_full A new bats echolocation-based algorithm for single objective optimisation
title_fullStr A new bats echolocation-based algorithm for single objective optimisation
title_full_unstemmed A new bats echolocation-based algorithm for single objective optimisation
title_short A new bats echolocation-based algorithm for single objective optimisation
title_sort new bats echolocation-based algorithm for single objective optimisation
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4875172/
https://www.ncbi.nlm.nih.gov/pubmed/27340501
http://dx.doi.org/10.1007/s12065-016-0134-5
work_keys_str_mv AT yahyanafrizuanmat anewbatsecholocationbasedalgorithmforsingleobjectiveoptimisation
AT tokhimosman anewbatsecholocationbasedalgorithmforsingleobjectiveoptimisation
AT kasdirinhyreilanuar anewbatsecholocationbasedalgorithmforsingleobjectiveoptimisation
AT yahyanafrizuanmat newbatsecholocationbasedalgorithmforsingleobjectiveoptimisation
AT tokhimosman newbatsecholocationbasedalgorithmforsingleobjectiveoptimisation
AT kasdirinhyreilanuar newbatsecholocationbasedalgorithmforsingleobjectiveoptimisation