Cargando…

Clinical decision-making and secondary findings in systems medicine

BACKGROUND: Systems medicine is the name for an assemblage of scientific strategies and practices that include bioinformatics approaches to human biology (especially systems biology); “big data” statistical analysis; and medical informatics tools. Whereas personalized and precision medicine involve...

Descripción completa

Detalles Bibliográficos
Autores principales: Fischer, T., Brothers, K.B., Erdmann, P., Langanke, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4875611/
https://www.ncbi.nlm.nih.gov/pubmed/27209083
http://dx.doi.org/10.1186/s12910-016-0113-5
Descripción
Sumario:BACKGROUND: Systems medicine is the name for an assemblage of scientific strategies and practices that include bioinformatics approaches to human biology (especially systems biology); “big data” statistical analysis; and medical informatics tools. Whereas personalized and precision medicine involve similar analytical methods applied to genomic and medical record data, systems medicine draws on these as well as other sources of data. Given this distinction, the clinical translation of systems medicine poses a number of important ethical and epistemological challenges for researchers working to generate systems medicine knowledge and clinicians working to apply it. DISCUSSION: This article focuses on three key challenges: First, we will discuss the conflicts in decision-making that can arise when healthcare providers committed to principles of experimental medicine or evidence-based medicine encounter individualized recommendations derived from computer algorithms. We will explore in particular whether controlled experiments, such as comparative effectiveness trials, should mediate the translation of systems medicine, or if instead individualized findings generated through “big data” approaches can be applied directly in clinical decision-making. Second, we will examine the case of the Riyadh Intensive Care Program Mortality Prediction Algorithm, pejoratively referred to as the “death computer,” to demonstrate the ethical challenges that can arise when big-data-driven scoring systems are applied in clinical contexts. We argue that the uncritical use of predictive clinical algorithms, including those envisioned for systems medicine, challenge basic understandings of the doctor-patient relationship. Third, we will build on the recent discourse on secondary findings in genomics and imaging to draw attention to the important implications of secondary findings derived from the joint analysis of data from diverse sources, including data recorded by patients in an attempt to realize their “quantified self.” SUMMARY: This paper examines possible ethical challenges that are likely to be raised as systems medicine to be translated into clinical medicine. These include the epistemological challenges for clinical decision-making, the use of scoring systems optimized by big data techniques and the risk that incidental and secondary findings will significantly increase. While some ethical implications remain still hypothetical we should use the opportunity to prospectively identify challenges to avoid making foreseeable mistakes when systems medicine inevitably arrives in routine care.