Cargando…
Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing
Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple...
Autores principales: | Li, Shuang, Liu, Bing, Zhang, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876218/ https://www.ncbi.nlm.nih.gov/pubmed/27247562 http://dx.doi.org/10.1155/2016/4920670 |
Ejemplares similares
-
Sub-Graph Regularization on Kernel Regression for Robust Semi-Supervised Dimensionality Reduction
por: Liu, Jiao, et al.
Publicado: (2019) -
On the microlocal regularity of the Schrödinger kernel
por: Craig, W
Publicado: (1996) -
Multiple-kernel learning for genomic data mining and prediction
por: Wilson, Christopher M., et al.
Publicado: (2019) -
Anomalies and supersymmetric regularization by dimensional reduction
por: Nicolai, Hermann C, et al.
Publicado: (1980) -
Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray
por: Li, Xuehua, et al.
Publicado: (2008)