Cargando…

Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis

Pathologists face a substantial increase in workload and complexity of histopathologic cancer diagnosis due to the advent of personalized medicine. Therefore, diagnostic protocols have to focus equally on efficiency and accuracy. In this paper we introduce ‘deep learning’ as a technique to improve t...

Descripción completa

Detalles Bibliográficos
Autores principales: Litjens, Geert, Sánchez, Clara I., Timofeeva, Nadya, Hermsen, Meyke, Nagtegaal, Iris, Kovacs, Iringo, Hulsbergen - van de Kaa, Christina, Bult, Peter, van Ginneken, Bram, van der Laak, Jeroen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876324/
https://www.ncbi.nlm.nih.gov/pubmed/27212078
http://dx.doi.org/10.1038/srep26286
Descripción
Sumario:Pathologists face a substantial increase in workload and complexity of histopathologic cancer diagnosis due to the advent of personalized medicine. Therefore, diagnostic protocols have to focus equally on efficiency and accuracy. In this paper we introduce ‘deep learning’ as a technique to improve the objectivity and efficiency of histopathologic slide analysis. Through two examples, prostate cancer identification in biopsy specimens and breast cancer metastasis detection in sentinel lymph nodes, we show the potential of this new methodology to reduce the workload for pathologists, while at the same time increasing objectivity of diagnoses. We found that all slides containing prostate cancer and micro- and macro-metastases of breast cancer could be identified automatically while 30–40% of the slides containing benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention. We conclude that ‘deep learning’ holds great promise to improve the efficacy of prostate cancer diagnosis and breast cancer staging.