Cargando…
Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
Pathologists face a substantial increase in workload and complexity of histopathologic cancer diagnosis due to the advent of personalized medicine. Therefore, diagnostic protocols have to focus equally on efficiency and accuracy. In this paper we introduce ‘deep learning’ as a technique to improve t...
Autores principales: | Litjens, Geert, Sánchez, Clara I., Timofeeva, Nadya, Hermsen, Meyke, Nagtegaal, Iris, Kovacs, Iringo, Hulsbergen - van de Kaa, Christina, Bult, Peter, van Ginneken, Bram, van der Laak, Jeroen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876324/ https://www.ncbi.nlm.nih.gov/pubmed/27212078 http://dx.doi.org/10.1038/srep26286 |
Ejemplares similares
-
Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks
por: Bándi, Péter, et al.
Publicado: (2019) -
Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard
por: Bulten, Wouter, et al.
Publicado: (2019) -
Artificial intelligence: is there a potential role in nephropathology?
por: Hermsen, Meyke, et al.
Publicado: (2020) -
Predicting biochemical recurrence of prostate cancer with artificial intelligence
por: Pinckaers, Hans, et al.
Publicado: (2022) -
1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
por: Litjens, Geert, et al.
Publicado: (2018)