Cargando…
Exome Sequencing and Gene Prioritization Correct Misdiagnosis in a Chinese Kindred with Familial Amyloid Polyneuropathy
Inherited neuropathies show considerable heterogeneity in clinical manifestations and genetic etiologies, and are therefore often difficult to diagnose. Whole-exome sequencing (WES) has been widely adopted to make definite diagnosis of unclear conditions, with proven efficacy in optimizing patients’...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876459/ https://www.ncbi.nlm.nih.gov/pubmed/27212199 http://dx.doi.org/10.1038/srep26362 |
Sumario: | Inherited neuropathies show considerable heterogeneity in clinical manifestations and genetic etiologies, and are therefore often difficult to diagnose. Whole-exome sequencing (WES) has been widely adopted to make definite diagnosis of unclear conditions, with proven efficacy in optimizing patients’ management. In this study, a large Chinese kindred segregating autosomal dominant polyneuropathy with incomplete penetrance was ascertained through a patient who was initially diagnosed as Charcot-Marie-Tooth disease. To investigate the genetic cause, forty-six living family members were genotyped by SNP microarrays, and one confirmed patient was subject to WES. Through systematic computational prioritization, we identified a missense mutation c.G148T in TTR gene which results in a p.V50L substitution known to cause transthyretin-related familial amyloid polyneuropathy. Co-segregation analysis and clinical follow-up confirmed the new diagnosis, which suggested new therapeutic options to the patients and informed high risk family members. This study confirms WES as a powerful tool in translational medicine, and further demostrates the practical utility of gene prioritization in narrowing the scope of causative mutation. |
---|