Cargando…
The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice
Objectives: Safflower yellow (SY) is the main effective ingredient of Carthamus tinctorius L. It has been reported that SY plays an important role in anti-inflammation, anti-platelet aggregation, and inhibiting thrombus formation. In present study, we try to investigate the effects of SY on body wei...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876777/ https://www.ncbi.nlm.nih.gov/pubmed/27242533 http://dx.doi.org/10.3389/fphar.2016.00127 |
_version_ | 1782433290318249984 |
---|---|
author | Zhu, Huijuan Wang, Xiangqing Pan, Hui Dai, Yufei Li, Naishi Wang, Linjie Yang, Hongbo Gong, Fengying |
author_facet | Zhu, Huijuan Wang, Xiangqing Pan, Hui Dai, Yufei Li, Naishi Wang, Linjie Yang, Hongbo Gong, Fengying |
author_sort | Zhu, Huijuan |
collection | PubMed |
description | Objectives: Safflower yellow (SY) is the main effective ingredient of Carthamus tinctorius L. It has been reported that SY plays an important role in anti-inflammation, anti-platelet aggregation, and inhibiting thrombus formation. In present study, we try to investigate the effects of SY on body weight, body fat mass, insulin sensitivity in high fat diet (HFD)-induced obese mice. Methods: HFD-induced obese male ICR mice were intraperitoneally injected with SY (120 mg kg(−1)) daily. Eight weeks later, intraperitoneal insulin tolerance test (IPITT), and intraperitoneal glucose tolerance test (IPGTT) were performed, and body weight, body fat mass, serum insulin levels were measured. The expression of glucose and lipid metabolic related genes in white adipose tissue (WAT) were determined by RT-qPCR and western blot technologies. Results: The administration obese mice with SY significantly reduced the body fat mass of HFD-induced obese mice (P < 0.05). IPITT test showed that the insulin sensitivity of SY treated obese mice were evidently improved. The mRNA levels of insulin signaling pathway related genes including insulin receptor substrate 1(IRS1), PKB protein kinase (AKT), glycogen synthase kinase 3β (GSK3β) and forkhead box protein O1(FOXO1) in mesenteric WAT of SY treated mice were significantly increased to 1.9- , 2.8- , 3.3- , and 5.9-folds of that in HFD-induced control obese mice, respectively (P < 0.05). The protein levels of AKT and GSK3β were also significantly increased to 3.0 and 5.2-folds of that in HFD-induced control obese mice, respectively (P < 0.05). Meanwhile, both the mRNA and protein levels of peroxisome proliferator-activated receptorgamma coactivator 1α (PGC1α) in inguinal subcutaneous WAT of SY group were notably increased to 2.5 and 3.0-folds of that in HFD-induced control obese mice (P < 0.05). Conclusions: SY significantly reduce the body fat mass, fasting blood glucose and increase insulin sensitivity of HFD-induced obese mice. The possible mechanism is to promote the browning of subcutaneous WAT and activate the IRS1/AKT/GSK3β pathway in visceral WAT. Our study provides an important experimental evidence for developing SY as a potential anti-obesity and anti-diabetic drug. |
format | Online Article Text |
id | pubmed-4876777 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48767772016-05-30 The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice Zhu, Huijuan Wang, Xiangqing Pan, Hui Dai, Yufei Li, Naishi Wang, Linjie Yang, Hongbo Gong, Fengying Front Pharmacol Pharmacology Objectives: Safflower yellow (SY) is the main effective ingredient of Carthamus tinctorius L. It has been reported that SY plays an important role in anti-inflammation, anti-platelet aggregation, and inhibiting thrombus formation. In present study, we try to investigate the effects of SY on body weight, body fat mass, insulin sensitivity in high fat diet (HFD)-induced obese mice. Methods: HFD-induced obese male ICR mice were intraperitoneally injected with SY (120 mg kg(−1)) daily. Eight weeks later, intraperitoneal insulin tolerance test (IPITT), and intraperitoneal glucose tolerance test (IPGTT) were performed, and body weight, body fat mass, serum insulin levels were measured. The expression of glucose and lipid metabolic related genes in white adipose tissue (WAT) were determined by RT-qPCR and western blot technologies. Results: The administration obese mice with SY significantly reduced the body fat mass of HFD-induced obese mice (P < 0.05). IPITT test showed that the insulin sensitivity of SY treated obese mice were evidently improved. The mRNA levels of insulin signaling pathway related genes including insulin receptor substrate 1(IRS1), PKB protein kinase (AKT), glycogen synthase kinase 3β (GSK3β) and forkhead box protein O1(FOXO1) in mesenteric WAT of SY treated mice were significantly increased to 1.9- , 2.8- , 3.3- , and 5.9-folds of that in HFD-induced control obese mice, respectively (P < 0.05). The protein levels of AKT and GSK3β were also significantly increased to 3.0 and 5.2-folds of that in HFD-induced control obese mice, respectively (P < 0.05). Meanwhile, both the mRNA and protein levels of peroxisome proliferator-activated receptorgamma coactivator 1α (PGC1α) in inguinal subcutaneous WAT of SY group were notably increased to 2.5 and 3.0-folds of that in HFD-induced control obese mice (P < 0.05). Conclusions: SY significantly reduce the body fat mass, fasting blood glucose and increase insulin sensitivity of HFD-induced obese mice. The possible mechanism is to promote the browning of subcutaneous WAT and activate the IRS1/AKT/GSK3β pathway in visceral WAT. Our study provides an important experimental evidence for developing SY as a potential anti-obesity and anti-diabetic drug. Frontiers Media S.A. 2016-05-23 /pmc/articles/PMC4876777/ /pubmed/27242533 http://dx.doi.org/10.3389/fphar.2016.00127 Text en Copyright © 2016 Zhu, Wang, Pan, Dai, Li, Wang, Yang and Gong. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Zhu, Huijuan Wang, Xiangqing Pan, Hui Dai, Yufei Li, Naishi Wang, Linjie Yang, Hongbo Gong, Fengying The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice |
title | The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice |
title_full | The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice |
title_fullStr | The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice |
title_full_unstemmed | The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice |
title_short | The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice |
title_sort | mechanism by which safflower yellow decreases body fat mass and improves insulin sensitivity in hfd-induced obese mice |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876777/ https://www.ncbi.nlm.nih.gov/pubmed/27242533 http://dx.doi.org/10.3389/fphar.2016.00127 |
work_keys_str_mv | AT zhuhuijuan themechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT wangxiangqing themechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT panhui themechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT daiyufei themechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT linaishi themechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT wanglinjie themechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT yanghongbo themechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT gongfengying themechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT zhuhuijuan mechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT wangxiangqing mechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT panhui mechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT daiyufei mechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT linaishi mechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT wanglinjie mechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT yanghongbo mechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice AT gongfengying mechanismbywhichsaffloweryellowdecreasesbodyfatmassandimprovesinsulinsensitivityinhfdinducedobesemice |