Cargando…

Rapid Repression of ADP Transport by Palmitoyl-CoA Is Attenuated by Exercise Training in Humans: A Potential Mechanism to Decrease Oxidative Stress and Improve Skeletal Muscle Insulin Signaling

Mitochondrial ADP transport may represent a convergence point unifying two prominent working models for the development of insulin resistance, as reactive lipids (specifically palmitoyl-CoA [P-CoA]) can inhibit ADP transport and subsequently increase mitochondrial reactive oxygen species emissions....

Descripción completa

Detalles Bibliográficos
Autores principales: Ludzki, Alison, Paglialunga, Sabina, Smith, Brennan K., Herbst, Eric A.F., Allison, Mary K., Heigenhauser, George J., Neufer, P. Darrell, Holloway, Graham P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876790/
https://www.ncbi.nlm.nih.gov/pubmed/25845660
http://dx.doi.org/10.2337/db14-1838
Descripción
Sumario:Mitochondrial ADP transport may represent a convergence point unifying two prominent working models for the development of insulin resistance, as reactive lipids (specifically palmitoyl-CoA [P-CoA]) can inhibit ADP transport and subsequently increase mitochondrial reactive oxygen species emissions. In the current study, we aimed to determine if exercise training in humans diminished P-CoA attenuation of mitochondrial ADP respiratory sensitivity. Six weeks of exercise training increased whole-body glucose homeostasis and skeletal muscle Akt signaling and reduced markers of oxidative stress without reducing maximal mitochondrial H(2)O(2) emissions. To ascertain if enhanced mitochondrial ADP transport contributed to the improvement in the in vivo oxidative state, we determined mitochondrial ADP sensitivity in the presence and absence of P-CoA. In the absence of P-CoA, exercise training reduced mitochondrial ADP sensitivity. In contrast, exercise training increased mitochondrial ADP sensitivity with P-CoA present. We further show that P-CoA noncompetitively inhibits mitochondrial ADP transport and the ability of ADP to attenuate mitochondrial H(2)O(2) emission. Altogether, the current data provide a potential mechanism for how P-CoA contributes to insulin resistance and highlight the ability of exercise training to diminish P-CoA attenuation in mitochondrial ADP transport.