Cargando…

Impaired bone healing in multitrauma patients is associated with altered leukocyte kinetics after major trauma

Animal studies have shown that the systemic inflammatory response to major injury impairs bone regeneration. It remains unclear whether the systemic immune response contributes to impairment of fracture healing in multitrauma patients. It is well known that systemic inflammatory changes after major...

Descripción completa

Detalles Bibliográficos
Autores principales: Bastian, Okan W, Kuijer, Anne, Koenderman, Leo, Stellato, Rebecca K, van Solinge, Wouter W, Leenen, Luke PH, Blokhuis, Taco J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876940/
https://www.ncbi.nlm.nih.gov/pubmed/27274302
http://dx.doi.org/10.2147/JIR.S101064
Descripción
Sumario:Animal studies have shown that the systemic inflammatory response to major injury impairs bone regeneration. It remains unclear whether the systemic immune response contributes to impairment of fracture healing in multitrauma patients. It is well known that systemic inflammatory changes after major trauma affect leukocyte kinetics. We therefore retrospectively compared the cellular composition of peripheral blood during the first 2 weeks after injury between multitrauma patients with normal (n=48) and impaired (n=32) fracture healing of the tibia. The peripheral blood-count curves of leukocytes, neutrophils, monocytes, and thrombocytes differed significantly between patients with normal and impaired fracture healing during the first 2 weeks after trauma (P-values were 0.0122, 0.0083, 0.0204, and <0.0001, respectively). Mean myeloid cell counts were above reference values during the second week after injury. Our data indicate that leukocyte kinetics differ significantly between patients with normal and impaired fracture healing during the first 2 weeks after major injury. This finding suggests that the systemic immune response to major trauma can disturb tissue regeneration.