Cargando…
In vitro and in vivo targeting imaging of pancreatic cancer using a Fe(3)O(4)@SiO(2) nanoprobe modified with anti-mesothelin antibody
Pancreatic cancer is a highly malignant disease with a 5-year survival rate <5% mainly due to lack of early diagnosis and effective therapy. In an effort to improve the early diagnostic rate of pancreatic cancer, a nanoprobe Fe(3)O(4)@SiO(2) modified with anti-mesothelin antibody (A-MFS) was prep...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876944/ https://www.ncbi.nlm.nih.gov/pubmed/27274243 http://dx.doi.org/10.2147/IJN.S104501 |
Sumario: | Pancreatic cancer is a highly malignant disease with a 5-year survival rate <5% mainly due to lack of early diagnosis and effective therapy. In an effort to improve the early diagnostic rate of pancreatic cancer, a nanoprobe Fe(3)O(4)@SiO(2) modified with anti-mesothelin antibody (A-MFS) was prepared to target cells and tumor tissues highly expressing mesothelin in vitro (human pancreatic cancer cell line SW1990) and in vivo (subcutaneously transplanted tumors) studies. The A-MFS probe was successfully prepared and was spherical and uniform with a hydrodynamic diameter between 110 and 130 nm. Cell Counting Kit-8 testing indicated that A-MFS was nontoxic in vitro and in vivo studies. The in vitro study showed that the A-MFS probe specifically targeted SW1990 cells with high mesothelin expression. The in vivo study was conducted in Siemens 3.0 T magnetic resonance imaging. The average T2-weighted signal values of the xenografts were 966.533±31.56 before injecting A-MFS and 691.133±56.84 before injecting saline solution. After injection of 0.1 mL A-MFS via nude mouse caudal vein for 2.5 hours, the average T2-weighted signal of the xenograft decreased by 342.533±42.6. The signal value decreased by −61.233±33.9 and −58.7±19.4 after injection of the saline and Fe(3)O(4)@SiO(2). The decrease of tumor signal by A-MFS was much more significant than that by saline and Fe(3)O(4)@SiO(2) (P<0.05). The results demonstrated the high stability and nontoxicity of A-MFS, which effectively targeted pancreatic cancer in vitro and in vivo. A-MFS is a promising agent for diagnosis of pancreatic cancer. |
---|