Cargando…
Methodological Issues in Predicting Pediatric Epilepsy Surgery Candidates Through Natural Language Processing and Machine Learning
Objective: We describe the development and evaluation of a system that uses machine learning and natural language processing techniques to identify potential candidates for surgical intervention for drug-resistant pediatric epilepsy. The data are comprised of free-text clinical notes extracted from...
Autores principales: | Cohen, Kevin Bretonnel, Glass, Benjamin, Greiner, Hansel M., Holland-Bouley, Katherine, Standridge, Shannon, Arya, Ravindra, Faist, Robert, Morita, Diego, Mangano, Francesco, Connolly, Brian, Glauser, Tracy, Pestian, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876984/ https://www.ncbi.nlm.nih.gov/pubmed/27257386 http://dx.doi.org/10.4137/BII.S38308 |
Ejemplares similares
-
Assessing the similarity of surface linguistic features related to epilepsy across pediatric hospitals
por: Connolly, Brian, et al.
Publicado: (2014) -
Focal Peak Activities in Spread of Interictal-Ictal Discharges in Epilepsy with Beamformer MEG: Evidence for an Epileptic Network?
por: Rose, Douglas F., et al.
Publicado: (2013) -
A nonparametric Bayesian method of translating machine learning scores to probabilities in clinical decision support
por: Connolly, Brian, et al.
Publicado: (2017) -
Themes in biomedical natural language processing: BioNLP08
por: Demner-Fushman, Dina, et al.
Publicado: (2008) -
Neuronal Circuits Supporting Development of Visual Naming Revealed by Intracranial Coherence Modulations
por: Arya, Ravindra, et al.
Publicado: (2022)