Cargando…
De novo sequencing and variant calling with nanopores using PoreSeq
The single-molecule accuracy of nanopore sequencing has been an area of rapid academic and commercial advancement, but remains challenging for the de novo analysis of genomes. We introduce here a novel algorithm for the error correction of nanopore data, utilizing statistical models of the physical...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877053/ https://www.ncbi.nlm.nih.gov/pubmed/26352647 http://dx.doi.org/10.1038/nbt.3360 |
Sumario: | The single-molecule accuracy of nanopore sequencing has been an area of rapid academic and commercial advancement, but remains challenging for the de novo analysis of genomes. We introduce here a novel algorithm for the error correction of nanopore data, utilizing statistical models of the physical system in order to obtain high accuracy de novo sequences at a range of coverage depths. We demonstrate the technique by sequencing M13 bacteriophage DNA to 99% accuracy at moderate coverage as well as its use in an assembly pipeline by sequencing E. coli and λ DNA at a range of coverages. We also show the algorithm’s ability to accurately classify sequence variants at far lower coverage than existing methods. |
---|