Cargando…
Spike-Based Bayesian-Hebbian Learning of Temporal Sequences
Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed...
Autores principales: | Tully, Philip J., Lindén, Henrik, Hennig, Matthias H., Lansner, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877102/ https://www.ncbi.nlm.nih.gov/pubmed/27213810 http://dx.doi.org/10.1371/journal.pcbi.1004954 |
Ejemplares similares
-
Probabilistic computation underlying sequence learning in a spiking attractor memory network
por: Tully, Philip, et al.
Publicado: (2013) -
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation
por: Fiebig, Florian, et al.
Publicado: (2017) -
Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks
por: Panda, Priyadarshini, et al.
Publicado: (2017) -
An Indexing Theory for Working Memory Based on Fast Hebbian Plasticity
por: Fiebig, Florian, et al.
Publicado: (2020) -
Action selection performance of a reconfigurable basal ganglia inspired model with Hebbian–Bayesian Go-NoGo connectivity
por: Berthet, Pierre, et al.
Publicado: (2012)