Cargando…

Round Robin for Optical Fiber Bragg Grating Metrology

NIST has administered the first round robin of measurements for optical fiber Bragg gratings. We compared the measurement of center wavelength, bandwidth, isolation, minimum relative transmittance, and relative group delay among several grating types in two industry groups, telecommunications and se...

Descripción completa

Detalles Bibliográficos
Autores principales: Rose, A. H., Wang, C.-M., Dyer, S. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2000
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877148/
https://www.ncbi.nlm.nih.gov/pubmed/27551640
http://dx.doi.org/10.6028/jres.105.066
Descripción
Sumario:NIST has administered the first round robin of measurements for optical fiber Bragg gratings. We compared the measurement of center wavelength, bandwidth, isolation, minimum relative transmittance, and relative group delay among several grating types in two industry groups, telecommunications and sensors. We found that the state of fiber Bragg grating metrology needs improvement in most areas. Specifically, when tunable lasers are used a filter is needed to remove broadband emissions from the laser. The linear slope of relative group delay measurements is sensitive to drift and systematic bias in the rf-modulation technique. The center wavelength measurement had a range of about 27 pm in the sensors group and is not adequate to support long-term structural monitoring applications.