Cargando…

Treasure of the Past: III: Gravitational Anisotropy in Crystals

Einstein’s theory of gravitation is based upon a fundamental postulate which asserts that gravitation and inertia are identical in nature and hence indistinguishable. This if true, is of the greatest theoretical importance, for gravitation has heretofore refused to show any relationship to other phy...

Descripción completa

Detalles Bibliográficos
Autor principal: Heyl, Paul R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2000
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877151/
https://www.ncbi.nlm.nih.gov/pubmed/27551629
http://dx.doi.org/10.6028/jres.105.051
_version_ 1782433341016899584
author Heyl, Paul R.
author_facet Heyl, Paul R.
author_sort Heyl, Paul R.
collection PubMed
description Einstein’s theory of gravitation is based upon a fundamental postulate which asserts that gravitation and inertia are identical in nature and hence indistinguishable. This if true, is of the greatest theoretical importance, for gravitation has heretofore refused to show any relationship to other physical phenomena. A most delicate test of this postulate is possible in a crystal of one of the nonisometric systems; for in such a crystal every known physical property (except inertia and, possibly, weight) varies with the axial direction in the crystal; and it is an interesting question whether, in such a crystal, gravitation will be found to align itself with inertia or will show some variability which will classify it with the great majority of physical phenomena. To test this point, large crystals were weighed in different axial positions with respect to the earth. The specimens examined represented all five nonisometric systems, and were weighed to a precision, in most cases, of 1 part in 10(9). The results were uniformly negative, and to this degree of precision are in Einstein’s favor. Incidentally, this work has shown the practical possibility of using the gravity balance to a precision of I part in 10(9), even when the swing of the beam must.be stopped and the object turned through a considerable angle. A precision of about the same order was attained by Majorana in 1920. In this work it was not necessary to arrest the beam or to touch the load. The next best record (in work of a somewhat different kind) at the International Bureau of Weights and Measures is 7 parts in 10(9).
format Online
Article
Text
id pubmed-4877151
institution National Center for Biotechnology Information
language English
publishDate 2000
publisher [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
record_format MEDLINE/PubMed
spelling pubmed-48771512016-08-22 Treasure of the Past: III: Gravitational Anisotropy in Crystals Heyl, Paul R. J Res Natl Inst Stand Technol Article Einstein’s theory of gravitation is based upon a fundamental postulate which asserts that gravitation and inertia are identical in nature and hence indistinguishable. This if true, is of the greatest theoretical importance, for gravitation has heretofore refused to show any relationship to other physical phenomena. A most delicate test of this postulate is possible in a crystal of one of the nonisometric systems; for in such a crystal every known physical property (except inertia and, possibly, weight) varies with the axial direction in the crystal; and it is an interesting question whether, in such a crystal, gravitation will be found to align itself with inertia or will show some variability which will classify it with the great majority of physical phenomena. To test this point, large crystals were weighed in different axial positions with respect to the earth. The specimens examined represented all five nonisometric systems, and were weighed to a precision, in most cases, of 1 part in 10(9). The results were uniformly negative, and to this degree of precision are in Einstein’s favor. Incidentally, this work has shown the practical possibility of using the gravity balance to a precision of I part in 10(9), even when the swing of the beam must.be stopped and the object turned through a considerable angle. A precision of about the same order was attained by Majorana in 1920. In this work it was not necessary to arrest the beam or to touch the load. The next best record (in work of a somewhat different kind) at the International Bureau of Weights and Measures is 7 parts in 10(9). [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2000 2000-08-01 /pmc/articles/PMC4877151/ /pubmed/27551629 http://dx.doi.org/10.6028/jres.105.051 Text en https://creativecommons.org/publicdomain/zero/1.0/ The Journal of Research of the National Institute of Standards and Technology is a publication of the U.S. Government. The papers are in the public domain and are not subject to copyright in the United States. Articles from J Res may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.
spellingShingle Article
Heyl, Paul R.
Treasure of the Past: III: Gravitational Anisotropy in Crystals
title Treasure of the Past: III: Gravitational Anisotropy in Crystals
title_full Treasure of the Past: III: Gravitational Anisotropy in Crystals
title_fullStr Treasure of the Past: III: Gravitational Anisotropy in Crystals
title_full_unstemmed Treasure of the Past: III: Gravitational Anisotropy in Crystals
title_short Treasure of the Past: III: Gravitational Anisotropy in Crystals
title_sort treasure of the past: iii: gravitational anisotropy in crystals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877151/
https://www.ncbi.nlm.nih.gov/pubmed/27551629
http://dx.doi.org/10.6028/jres.105.051
work_keys_str_mv AT heylpaulr treasureofthepastiiigravitationalanisotropyincrystals