Cargando…
Computation of Fresnel Integrals. II
This paper describes an improved method for computing Fresnel integrals with an error of less than 1 × 10(−9). The method is based on a known approximate formula for a different integral which is due to Boersma and referenced by Abramowitz and Stegun.
Autor principal: | Mielenz, Klaus D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
2000
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877157/ https://www.ncbi.nlm.nih.gov/pubmed/27551627 http://dx.doi.org/10.6028/jres.105.049 |
Ejemplares similares
-
Computation of Fresnel Integrals
por: Mielenz, Klaus D.
Publicado: (1997) -
Algorithms for Fresnel Diffraction at Rectangular and Circular Apertures
por: Mielenz, Klaus D.
Publicado: (1998) -
Fresnel diffraction in deuterium
por: Gottfried, Kurt
Publicado: (1971) -
Fresnel Prism on Hess Screen Test
por: Koh, Kyung Min, et al.
Publicado: (2013) -
Stretchable Binary Fresnel Lens for Focus Tuning
por: Li, Xueming, et al.
Publicado: (2016)