Cargando…
Novel expansion techniques for skin grafts
The quest for skin expansion is not restricted to cover a large area alone, but to produce acceptable uniform surfaces, robust engraftment to withstand mechanical shear and infection, with a minimal donor morbidity. Ease of the technique, shorter healing period and reproducible results are essential...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878244/ https://www.ncbi.nlm.nih.gov/pubmed/27274117 http://dx.doi.org/10.4103/0970-0358.182253 |
_version_ | 1782433532008726528 |
---|---|
author | Kadam, Dinesh |
author_facet | Kadam, Dinesh |
author_sort | Kadam, Dinesh |
collection | PubMed |
description | The quest for skin expansion is not restricted to cover a large area alone, but to produce acceptable uniform surfaces, robust engraftment to withstand mechanical shear and infection, with a minimal donor morbidity. Ease of the technique, shorter healing period and reproducible results are essential parameters to adopt novel techniques. Significant advances seen in four fronts of autologous grafting are: (1) Dermal–epidermal graft expansion techniques, (2) epidermal graft harvests technique, (3) melanocyte-rich basal cell therapy for vitiligo and (4) robust and faster autologous cell cultures. Meek's original concept that the sum of perimeter of smaller grafts is larger than the harvested graft, and smaller the graft size, the greater is the potential for regeneration is witnessed in newer modification. Further, as graft size becomes smaller or minced, these micrografts can survive on the wound bed exudate irrespective of their dermal orientation. Expansion produced by 4 mm × 4 mm sized Meek micrografts is 10-folds, similarly 0.8 mm × 0.8 mm size micrografts produce 100-fold expansion, which becomes 700-fold with pixel grafts of 0.3 mm × 0.3 mm size. Fractional skin harvest is another new technique with 700 μ size full thickness graft. These provide instant autologous non-cultured graft to cover extensive areas with similar quality of engraftment surface as split skin grafts. Newer tools for epidermal blister graft harvest quickly, with uniform size to produce 7-fold expansions with reproducible results. In addition, donor area heals faster with minimal scar. Melanocyte-rich cell suspension is utilised in vitiligo surgery tapping the potential of hair root melanocytes. Further advances in the cell culture to reduce the cultivation time and provide stronger epidermal sheets with dermal carrier are seen in trials. |
format | Online Article Text |
id | pubmed-4878244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-48782442016-06-07 Novel expansion techniques for skin grafts Kadam, Dinesh Indian J Plast Surg Prof. Mira Sen (Banerjee) CME Article The quest for skin expansion is not restricted to cover a large area alone, but to produce acceptable uniform surfaces, robust engraftment to withstand mechanical shear and infection, with a minimal donor morbidity. Ease of the technique, shorter healing period and reproducible results are essential parameters to adopt novel techniques. Significant advances seen in four fronts of autologous grafting are: (1) Dermal–epidermal graft expansion techniques, (2) epidermal graft harvests technique, (3) melanocyte-rich basal cell therapy for vitiligo and (4) robust and faster autologous cell cultures. Meek's original concept that the sum of perimeter of smaller grafts is larger than the harvested graft, and smaller the graft size, the greater is the potential for regeneration is witnessed in newer modification. Further, as graft size becomes smaller or minced, these micrografts can survive on the wound bed exudate irrespective of their dermal orientation. Expansion produced by 4 mm × 4 mm sized Meek micrografts is 10-folds, similarly 0.8 mm × 0.8 mm size micrografts produce 100-fold expansion, which becomes 700-fold with pixel grafts of 0.3 mm × 0.3 mm size. Fractional skin harvest is another new technique with 700 μ size full thickness graft. These provide instant autologous non-cultured graft to cover extensive areas with similar quality of engraftment surface as split skin grafts. Newer tools for epidermal blister graft harvest quickly, with uniform size to produce 7-fold expansions with reproducible results. In addition, donor area heals faster with minimal scar. Melanocyte-rich cell suspension is utilised in vitiligo surgery tapping the potential of hair root melanocytes. Further advances in the cell culture to reduce the cultivation time and provide stronger epidermal sheets with dermal carrier are seen in trials. Medknow Publications & Media Pvt Ltd 2016 /pmc/articles/PMC4878244/ /pubmed/27274117 http://dx.doi.org/10.4103/0970-0358.182253 Text en Copyright: © Indian Journal of Plastic Surgery http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non commercially, as long as the author is credited and the new creations are licensed under the identical terms. |
spellingShingle | Prof. Mira Sen (Banerjee) CME Article Kadam, Dinesh Novel expansion techniques for skin grafts |
title | Novel expansion techniques for skin grafts |
title_full | Novel expansion techniques for skin grafts |
title_fullStr | Novel expansion techniques for skin grafts |
title_full_unstemmed | Novel expansion techniques for skin grafts |
title_short | Novel expansion techniques for skin grafts |
title_sort | novel expansion techniques for skin grafts |
topic | Prof. Mira Sen (Banerjee) CME Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878244/ https://www.ncbi.nlm.nih.gov/pubmed/27274117 http://dx.doi.org/10.4103/0970-0358.182253 |
work_keys_str_mv | AT kadamdinesh novelexpansiontechniquesforskingrafts |