Cargando…
Clustering proteins from interaction networks for the prediction of cellular functions
BACKGROUND: Developing reliable and efficient strategies allowing to infer a function to yet uncharacterized proteins based on interaction networks is of crucial interest in the current context of high-throughput data generation. In this paper, we develop a new algorithm for clustering vertices of a...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC487898/ https://www.ncbi.nlm.nih.gov/pubmed/15251039 http://dx.doi.org/10.1186/1471-2105-5-95 |
_version_ | 1782121662921048064 |
---|---|
author | Brun, Christine Herrmann, Carl Guénoche, Alain |
author_facet | Brun, Christine Herrmann, Carl Guénoche, Alain |
author_sort | Brun, Christine |
collection | PubMed |
description | BACKGROUND: Developing reliable and efficient strategies allowing to infer a function to yet uncharacterized proteins based on interaction networks is of crucial interest in the current context of high-throughput data generation. In this paper, we develop a new algorithm for clustering vertices of a protein-protein interaction network using a density function, providing disjoint classes. RESULTS: Applied to the yeast interaction network, the classes obtained appear to be biological significant. The partitions are then used to make functional predictions for uncharacterized yeast proteins, using an annotation procedure that takes into account the binary interactions between proteins inside the classes. We show that this procedure is able to enhance the performances with respect to previous approaches. Finally, we propose a new annotation for 37 previously uncharacterized yeast proteins. CONCLUSION: We believe that our results represent a significant improvement for the inference of cellular functions, that can be applied to other organism as well as to other type of interaction graph, such as genetic interactions. |
format | Text |
id | pubmed-487898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-4878982004-07-25 Clustering proteins from interaction networks for the prediction of cellular functions Brun, Christine Herrmann, Carl Guénoche, Alain BMC Bioinformatics Methodology Article BACKGROUND: Developing reliable and efficient strategies allowing to infer a function to yet uncharacterized proteins based on interaction networks is of crucial interest in the current context of high-throughput data generation. In this paper, we develop a new algorithm for clustering vertices of a protein-protein interaction network using a density function, providing disjoint classes. RESULTS: Applied to the yeast interaction network, the classes obtained appear to be biological significant. The partitions are then used to make functional predictions for uncharacterized yeast proteins, using an annotation procedure that takes into account the binary interactions between proteins inside the classes. We show that this procedure is able to enhance the performances with respect to previous approaches. Finally, we propose a new annotation for 37 previously uncharacterized yeast proteins. CONCLUSION: We believe that our results represent a significant improvement for the inference of cellular functions, that can be applied to other organism as well as to other type of interaction graph, such as genetic interactions. BioMed Central 2004-07-13 /pmc/articles/PMC487898/ /pubmed/15251039 http://dx.doi.org/10.1186/1471-2105-5-95 Text en Copyright © 2004 Brun et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. |
spellingShingle | Methodology Article Brun, Christine Herrmann, Carl Guénoche, Alain Clustering proteins from interaction networks for the prediction of cellular functions |
title | Clustering proteins from interaction networks for the prediction of cellular functions |
title_full | Clustering proteins from interaction networks for the prediction of cellular functions |
title_fullStr | Clustering proteins from interaction networks for the prediction of cellular functions |
title_full_unstemmed | Clustering proteins from interaction networks for the prediction of cellular functions |
title_short | Clustering proteins from interaction networks for the prediction of cellular functions |
title_sort | clustering proteins from interaction networks for the prediction of cellular functions |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC487898/ https://www.ncbi.nlm.nih.gov/pubmed/15251039 http://dx.doi.org/10.1186/1471-2105-5-95 |
work_keys_str_mv | AT brunchristine clusteringproteinsfrominteractionnetworksforthepredictionofcellularfunctions AT herrmanncarl clusteringproteinsfrominteractionnetworksforthepredictionofcellularfunctions AT guenochealain clusteringproteinsfrominteractionnetworksforthepredictionofcellularfunctions |