Cargando…
Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application
In this study, we determine the optimal feature-combination for classification of functional near-infrared spectroscopy (fNIRS) signals with the best accuracies for development of a two-class brain-computer interface (BCI). Using a multi-channel continuous-wave imaging system, mental arithmetic sign...
Autores principales: | Naseer, Noman, Noori, Farzan M., Qureshi, Nauman K., Hong, Keum-Shik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879140/ https://www.ncbi.nlm.nih.gov/pubmed/27252637 http://dx.doi.org/10.3389/fnhum.2016.00237 |
Ejemplares similares
-
Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface
por: Naseer, Noman, et al.
Publicado: (2016) -
Enhancing Classification Performance of Functional Near-Infrared Spectroscopy- Brain–Computer Interface Using Adaptive Estimation of General Linear Model Coefficients
por: Qureshi, Nauman Khalid, et al.
Publicado: (2017) -
Vector Phase Analysis Approach for Sleep Stage Classification: A Functional Near-Infrared Spectroscopy-Based Passive Brain–Computer Interface
por: Arif, Saad, et al.
Publicado: (2021) -
fNIRS-based Neurorobotic Interface for gait rehabilitation
por: Khan, Rayyan Azam, et al.
Publicado: (2018) -
fNIRS-based brain-computer interfaces: a review
por: Naseer, Noman, et al.
Publicado: (2015)