Cargando…

Molecular Architecture of  Yeast Chromatin Assembly Factor 1

Chromatin Assembly Complex 1 (CAF-1) is a major histone chaperone involved in deposition of histone H3 and H4 into nucleosome. CAF-1 is composed of three subunits; p150, p60 and p48 for human and Cac1, Cac2 and Cac3 for yeast. Despite of its central role in chromatin formation, structural features o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Daegeun, Setiaputra, Dheva, Jung, Taeyang, Chung, Jaehee, Leitner, Alexander, Yoon, Jungmin, Aebersold, Ruedi, Hebert, Hans, Yip, Calvin K., Song, Ji-Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879628/
https://www.ncbi.nlm.nih.gov/pubmed/27221973
http://dx.doi.org/10.1038/srep26702
Descripción
Sumario:Chromatin Assembly Complex 1 (CAF-1) is a major histone chaperone involved in deposition of histone H3 and H4 into nucleosome. CAF-1 is composed of three subunits; p150, p60 and p48 for human and Cac1, Cac2 and Cac3 for yeast. Despite of its central role in chromatin formation, structural features of the full CAF-1 in complex with histones and other chaperones have not been well characterized. Here, we dissect molecular architecture of yeast CAF-1 (yCAF-1) by cross-linking mass spectrometry (XL-MS) and negative stain single-particle electron microscopy (EM). Our work revealed that Cac1, the largest subunit of yCAF-1, might serve as a major histone binding platform linking Cac2 and Cac3. In addition, EM analysis showed that yCAF-1 adopts a bilobal shape and Cac1 connecting Cac2 and Cac3 to generate a platform for binding histones. This study provides the first structural glimpse of the full CAF-1 complex and a structural framework to understand histone chaperoning processes.