Cargando…

A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis

Diffusion tensor imaging (DTI) is a sensitive tool for the assessment of microstructural alterations in brain white matter (WM). We propose a new processing technique to detect, local and global longitudinal changes of diffusivity metrics, in homologous regions along WM fiber-bundles. To this end, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Stamile, Claudio, Kocevar, Gabriel, Cotton, François, Durand-Dubief, Françoise, Hannoun, Salem, Frindel, Carole, Guttmann, Charles R. G., Rousseau, David, Sappey-Marinier, Dominique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880200/
https://www.ncbi.nlm.nih.gov/pubmed/27224308
http://dx.doi.org/10.1371/journal.pone.0156405
_version_ 1782433772700958720
author Stamile, Claudio
Kocevar, Gabriel
Cotton, François
Durand-Dubief, Françoise
Hannoun, Salem
Frindel, Carole
Guttmann, Charles R. G.
Rousseau, David
Sappey-Marinier, Dominique
author_facet Stamile, Claudio
Kocevar, Gabriel
Cotton, François
Durand-Dubief, Françoise
Hannoun, Salem
Frindel, Carole
Guttmann, Charles R. G.
Rousseau, David
Sappey-Marinier, Dominique
author_sort Stamile, Claudio
collection PubMed
description Diffusion tensor imaging (DTI) is a sensitive tool for the assessment of microstructural alterations in brain white matter (WM). We propose a new processing technique to detect, local and global longitudinal changes of diffusivity metrics, in homologous regions along WM fiber-bundles. To this end, a reliable and automatic processing pipeline was developed in three steps: 1) co-registration and diffusion metrics computation, 2) tractography, bundle extraction and processing, and 3) longitudinal fiber-bundle analysis. The last step was based on an original Gaussian mixture model providing a fine analysis of fiber-bundle cross-sections, and allowing a sensitive detection of longitudinal changes along fibers. This method was tested on simulated and clinical data. High levels of F-Measure were obtained on simulated data. Experiments on cortico-spinal tract and inferior fronto-occipital fasciculi of five patients with Multiple Sclerosis (MS) included in a weekly follow-up protocol highlighted the greater sensitivity of this fiber scale approach to detect small longitudinal alterations.
format Online
Article
Text
id pubmed-4880200
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-48802002016-06-09 A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis Stamile, Claudio Kocevar, Gabriel Cotton, François Durand-Dubief, Françoise Hannoun, Salem Frindel, Carole Guttmann, Charles R. G. Rousseau, David Sappey-Marinier, Dominique PLoS One Research Article Diffusion tensor imaging (DTI) is a sensitive tool for the assessment of microstructural alterations in brain white matter (WM). We propose a new processing technique to detect, local and global longitudinal changes of diffusivity metrics, in homologous regions along WM fiber-bundles. To this end, a reliable and automatic processing pipeline was developed in three steps: 1) co-registration and diffusion metrics computation, 2) tractography, bundle extraction and processing, and 3) longitudinal fiber-bundle analysis. The last step was based on an original Gaussian mixture model providing a fine analysis of fiber-bundle cross-sections, and allowing a sensitive detection of longitudinal changes along fibers. This method was tested on simulated and clinical data. High levels of F-Measure were obtained on simulated data. Experiments on cortico-spinal tract and inferior fronto-occipital fasciculi of five patients with Multiple Sclerosis (MS) included in a weekly follow-up protocol highlighted the greater sensitivity of this fiber scale approach to detect small longitudinal alterations. Public Library of Science 2016-05-25 /pmc/articles/PMC4880200/ /pubmed/27224308 http://dx.doi.org/10.1371/journal.pone.0156405 Text en © 2016 Stamile et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Stamile, Claudio
Kocevar, Gabriel
Cotton, François
Durand-Dubief, Françoise
Hannoun, Salem
Frindel, Carole
Guttmann, Charles R. G.
Rousseau, David
Sappey-Marinier, Dominique
A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis
title A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis
title_full A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis
title_fullStr A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis
title_full_unstemmed A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis
title_short A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis
title_sort sensitive and automatic white matter fiber tracts model for longitudinal analysis of diffusion tensor images in multiple sclerosis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880200/
https://www.ncbi.nlm.nih.gov/pubmed/27224308
http://dx.doi.org/10.1371/journal.pone.0156405
work_keys_str_mv AT stamileclaudio asensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT kocevargabriel asensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT cottonfrancois asensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT duranddubieffrancoise asensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT hannounsalem asensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT frindelcarole asensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT guttmanncharlesrg asensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT rousseaudavid asensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT sappeymarinierdominique asensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT stamileclaudio sensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT kocevargabriel sensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT cottonfrancois sensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT duranddubieffrancoise sensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT hannounsalem sensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT frindelcarole sensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT guttmanncharlesrg sensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT rousseaudavid sensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis
AT sappeymarinierdominique sensitiveandautomaticwhitematterfibertractsmodelforlongitudinalanalysisofdiffusiontensorimagesinmultiplesclerosis