Cargando…

Extracellular Superoxide Dismutase: Growth Promoter or Tumor Suppressor?

Extracellular superoxide dismutase (SOD3) gene transfer to tissue damage results in increased healing, increased cell proliferation, decreased apoptosis, and decreased inflammatory cell infiltration. At molecular level, in vivo SOD3 overexpression reduces superoxide anion (O(2) (−)) concentration an...

Descripción completa

Detalles Bibliográficos
Autor principal: Laukkanen, Mikko O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880707/
https://www.ncbi.nlm.nih.gov/pubmed/27293512
http://dx.doi.org/10.1155/2016/3612589
Descripción
Sumario:Extracellular superoxide dismutase (SOD3) gene transfer to tissue damage results in increased healing, increased cell proliferation, decreased apoptosis, and decreased inflammatory cell infiltration. At molecular level, in vivo SOD3 overexpression reduces superoxide anion (O(2) (−)) concentration and increases mitogen kinase activation suggesting that SOD3 could have life-supporting characteristics. The hypothesis is further strengthened by the observations showing significantly increased mortality in conditional knockout mice. However, in cancer SOD3 has been shown to either increase or decrease cell proliferation and survival depending on the model system used, indicating that SOD3-derived growth mechanisms are not completely understood. In this paper, the author reviews the main discoveries in SOD3-dependent growth regulation and signal transduction.