Cargando…
Discovering causal interactions using Bayesian network scoring and information gain
BACKGROUND: The problem of learning causal influences from data has recently attracted much attention. Standard statistical methods can have difficulty learning discrete causes, which interacting to affect a target, because the assumptions in these methods often do not model discrete causal relation...
Autores principales: | Zeng, Zexian, Jiang, Xia, Neapolitan, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880828/ https://www.ncbi.nlm.nih.gov/pubmed/27230078 http://dx.doi.org/10.1186/s12859-016-1084-8 |
Ejemplares similares
-
Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring
por: Jiang, Xia, et al.
Publicado: (2015) -
Learning genetic epistasis using Bayesian network scoring criteria
por: Jiang, Xia, et al.
Publicado: (2011) -
Leveraging Bayesian networks and information theory to learn risk factors for breast cancer metastasis
por: Jiang, Xia, et al.
Publicado: (2020) -
Modeling the Altered Expression Levels of Genes on Signaling Pathways in Tumors As Causal Bayesian Networks
por: Neapolitan, Richard, et al.
Publicado: (2014) -
Learning Bayesian networks /
por: Neapolitan, Richard E.
Publicado: (2004)