Cargando…

Percolation Phase Transition of Surface Air Temperature Networks under Attacks of El Niño/La Niña

In this study, sea surface air temperature over the Pacific is constructed as a network, and the influences of sea surface temperature anomaly in the tropical central eastern Pacific (El Niño/La Niña) are regarded as a kind of natural attack on the network. The results show that El Niño/La Niña lead...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Zhenghui, Yuan, Naiming, Fu, Zuntao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880929/
https://www.ncbi.nlm.nih.gov/pubmed/27226194
http://dx.doi.org/10.1038/srep26779
Descripción
Sumario:In this study, sea surface air temperature over the Pacific is constructed as a network, and the influences of sea surface temperature anomaly in the tropical central eastern Pacific (El Niño/La Niña) are regarded as a kind of natural attack on the network. The results show that El Niño/La Niña leads an abrupt percolation phase transition on the climate networks from stable to unstable or metastable phase state, corresponding to the fact that the climate condition changes from normal to abnormal significantly during El Niño/La Niña. By simulating three different forms of attacks on an idealized network, including Most connected Attack (MA), Localized Attack (LA) and Random Attack (RA), we found that both MA and LA lead to stepwise phase transitions, while RA leads to a second-order phase transition. It is found that most attacks due to El Niño/La Niña are close to the combination of MA and LA, and a percolation critical threshold P(c) can be estimated to determine whether the percolation phase transition happens. Therefore, the findings in this study may renew our understandings of the influence of El Niño/La Niña on climate, and further help us in better predicting the subsequent events triggered by El Niño/La Niña.