Cargando…

Overground walking training with the i-Walker, a robotic servo-assistive device, enhances balance in patients with subacute stroke: a randomized controlled trial

BACKGROUND: Patients affected by mild stroke benefit more from physiological overground walking training than walking-like training performed in place using specific devices. The aim of the study was to evaluate the effects of overground robotic walking training performed with the servo-assistive ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Morone, Giovanni, Annicchiarico, Roberta, Iosa, Marco, Federici, Alessia, Paolucci, Stefano, Cortés, Ulises, Caltagirone, Carlo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880987/
https://www.ncbi.nlm.nih.gov/pubmed/27225043
http://dx.doi.org/10.1186/s12984-016-0155-4
Descripción
Sumario:BACKGROUND: Patients affected by mild stroke benefit more from physiological overground walking training than walking-like training performed in place using specific devices. The aim of the study was to evaluate the effects of overground robotic walking training performed with the servo-assistive robotic rollator (i-Walker) on walking, balance, gait stability and falls in a community setting in patients with mild subacute stroke. METHODS: Forty-four patients were randomly assigned to two different groups that received the same therapy in two daily 40-min sessions 5 days a week for 4 weeks. Twenty sessions of standard therapy were performed by both groups. In the other 20 sessions the subjects enrolled in the i-Walker-Group (iWG) performed with the i-Walker and the Control-Group patients (CG) performed the same amount of conventional walking oriented therapy. Clinical and instrumented gait assessments were made pre- and post-treatment. The follow-up observation consisted of recording the number of fallers in the community setting after 6 months. RESULTS: Treatment effectiveness was higher in the iWG group in terms of balance improvement (Tinetti: 68.4 ± 27.6 % vs. 48.1 ± 33.9 %, p = 0.033) and 10-m and 6-min timed walking tests (significant interaction between group and time: F(1,40) = 14.252, p = 0.001; and F(1,40) = 7.883, p = 0.008, respectively). When measured, latero-lateral upper body accelerations were reduced in iWG (F = 4.727, p = 0.036), suggesting increased gait stability, which was supported by a reduced number of falls at home. CONCLUSIONS: A robotic servo-assisted i-Walker improved walking performance and balance in patients affected by mild/moderate stroke, leading to increased gait stability and reduced falls in the community. TRIAL REGISTRATION: This study was registered on anzctr.org.au (July 1, 2015; ACTRN12615000681550).