Cargando…
Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials
Bone substitutes can be designed to replicate physiological structure and function by creating a microenvironment that supports crosstalk between bone and immune cells found in the native tissue, specifically osteoblasts and osteoclasts. Human induced pluripotent stem cells (hiPSC) represent a power...
Autores principales: | Jeon, Ok Hee, Panicker, Leelamma M., Lu, Qiaozhi, Chae, Jeremy J., Feldman, Ricardo A., Elisseeff, Jennifer H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881234/ https://www.ncbi.nlm.nih.gov/pubmed/27225733 http://dx.doi.org/10.1038/srep26761 |
Ejemplares similares
-
Altered Differentiation Potential of Gaucher’s Disease iPSC Neuronal Progenitors due to Wnt/β-Catenin Downregulation
por: Awad, Ola, et al.
Publicado: (2017) -
iPSC-based approach for human hair follicle regeneration
por: Vatanashevanopakorn, Chinnavuth, et al.
Publicado: (2023) -
4-Phenylbutyric acid enhances the mineralization of osteogenesis imperfecta iPSC-derived osteoblasts
por: Takeyari, Shinji, et al.
Publicado: (2020) -
Biomaterials and Tissue Engineering Strategies for Conjunctival Reconstruction and Dry Eye Treatment
por: Lu, Qiaozhi, et al.
Publicado: (2015) -
Optimizing the Use of iPSC-CMs for Cardiac Regeneration in Animal Models
por: Bizy, Alexandra, et al.
Publicado: (2020)