Cargando…
Evaluation of a Mathematical Model of Rat Body Weight Regulation in Application to Caloric Restriction and Drug Treatment Studies
The purpose of this work is to develop a mathematical model of energy balance and body weight regulation that can predict species-specific response to common pre-clinical interventions. To this end, we evaluate the ability of a previously published mathematical model of mouse metabolism to describe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882007/ https://www.ncbi.nlm.nih.gov/pubmed/27227543 http://dx.doi.org/10.1371/journal.pone.0155674 |
_version_ | 1782434059991908352 |
---|---|
author | Selimkhanov, Jangir Thompson, W. Clayton Patterson, Terrell A. Hadcock, John R. Scott, Dennis O. Maurer, Tristan S. Musante, Cynthia J. |
author_facet | Selimkhanov, Jangir Thompson, W. Clayton Patterson, Terrell A. Hadcock, John R. Scott, Dennis O. Maurer, Tristan S. Musante, Cynthia J. |
author_sort | Selimkhanov, Jangir |
collection | PubMed |
description | The purpose of this work is to develop a mathematical model of energy balance and body weight regulation that can predict species-specific response to common pre-clinical interventions. To this end, we evaluate the ability of a previously published mathematical model of mouse metabolism to describe changes in body weight and body composition in rats in response to two short-term interventions. First, we adapt the model to describe body weight and composition changes in Sprague-Dawley rats by fitting to data previously collected from a 26-day caloric restriction study. The calibrated model is subsequently used to describe changes in rat body weight and composition in a 23-day cannabinoid receptor 1 antagonist (CB1Ra) study. While the model describes body weight data well, it fails to replicate body composition changes with CB1Ra treatment. Evaluation of a key model assumption about deposition of fat and fat-free masses shows a limitation of the model in short-term studies due to the constraint placed on the relative change in body composition components. We demonstrate that the model can be modified to overcome this limitation, and propose additional measurements to further test the proposed model predictions. These findings illustrate how mathematical models can be used to support drug discovery and development by identifying key knowledge gaps and aiding in the design of additional experiments to further our understanding of disease-relevant and species-specific physiology. |
format | Online Article Text |
id | pubmed-4882007 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48820072016-06-10 Evaluation of a Mathematical Model of Rat Body Weight Regulation in Application to Caloric Restriction and Drug Treatment Studies Selimkhanov, Jangir Thompson, W. Clayton Patterson, Terrell A. Hadcock, John R. Scott, Dennis O. Maurer, Tristan S. Musante, Cynthia J. PLoS One Research Article The purpose of this work is to develop a mathematical model of energy balance and body weight regulation that can predict species-specific response to common pre-clinical interventions. To this end, we evaluate the ability of a previously published mathematical model of mouse metabolism to describe changes in body weight and body composition in rats in response to two short-term interventions. First, we adapt the model to describe body weight and composition changes in Sprague-Dawley rats by fitting to data previously collected from a 26-day caloric restriction study. The calibrated model is subsequently used to describe changes in rat body weight and composition in a 23-day cannabinoid receptor 1 antagonist (CB1Ra) study. While the model describes body weight data well, it fails to replicate body composition changes with CB1Ra treatment. Evaluation of a key model assumption about deposition of fat and fat-free masses shows a limitation of the model in short-term studies due to the constraint placed on the relative change in body composition components. We demonstrate that the model can be modified to overcome this limitation, and propose additional measurements to further test the proposed model predictions. These findings illustrate how mathematical models can be used to support drug discovery and development by identifying key knowledge gaps and aiding in the design of additional experiments to further our understanding of disease-relevant and species-specific physiology. Public Library of Science 2016-05-26 /pmc/articles/PMC4882007/ /pubmed/27227543 http://dx.doi.org/10.1371/journal.pone.0155674 Text en © 2016 Selimkhanov et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Selimkhanov, Jangir Thompson, W. Clayton Patterson, Terrell A. Hadcock, John R. Scott, Dennis O. Maurer, Tristan S. Musante, Cynthia J. Evaluation of a Mathematical Model of Rat Body Weight Regulation in Application to Caloric Restriction and Drug Treatment Studies |
title | Evaluation of a Mathematical Model of Rat Body Weight Regulation in Application to Caloric Restriction and Drug Treatment Studies |
title_full | Evaluation of a Mathematical Model of Rat Body Weight Regulation in Application to Caloric Restriction and Drug Treatment Studies |
title_fullStr | Evaluation of a Mathematical Model of Rat Body Weight Regulation in Application to Caloric Restriction and Drug Treatment Studies |
title_full_unstemmed | Evaluation of a Mathematical Model of Rat Body Weight Regulation in Application to Caloric Restriction and Drug Treatment Studies |
title_short | Evaluation of a Mathematical Model of Rat Body Weight Regulation in Application to Caloric Restriction and Drug Treatment Studies |
title_sort | evaluation of a mathematical model of rat body weight regulation in application to caloric restriction and drug treatment studies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882007/ https://www.ncbi.nlm.nih.gov/pubmed/27227543 http://dx.doi.org/10.1371/journal.pone.0155674 |
work_keys_str_mv | AT selimkhanovjangir evaluationofamathematicalmodelofratbodyweightregulationinapplicationtocaloricrestrictionanddrugtreatmentstudies AT thompsonwclayton evaluationofamathematicalmodelofratbodyweightregulationinapplicationtocaloricrestrictionanddrugtreatmentstudies AT pattersonterrella evaluationofamathematicalmodelofratbodyweightregulationinapplicationtocaloricrestrictionanddrugtreatmentstudies AT hadcockjohnr evaluationofamathematicalmodelofratbodyweightregulationinapplicationtocaloricrestrictionanddrugtreatmentstudies AT scottdenniso evaluationofamathematicalmodelofratbodyweightregulationinapplicationtocaloricrestrictionanddrugtreatmentstudies AT maurertristans evaluationofamathematicalmodelofratbodyweightregulationinapplicationtocaloricrestrictionanddrugtreatmentstudies AT musantecynthiaj evaluationofamathematicalmodelofratbodyweightregulationinapplicationtocaloricrestrictionanddrugtreatmentstudies |