Cargando…
Proton Conduction in a Phosphonate-Based Metal–Organic Framework Mediated by Intrinsic “Free Diffusion inside a Sphere”
[Image: see text] Understanding the molecular mechanism of proton conduction is crucial for the design of new materials with improved conductivity. Quasi-elastic neutron scattering (QENS) has been used to probe the mechanism of proton diffusion within a new phosphonate-based metal–organic framework...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882730/ https://www.ncbi.nlm.nih.gov/pubmed/27182787 http://dx.doi.org/10.1021/jacs.6b02194 |
Sumario: | [Image: see text] Understanding the molecular mechanism of proton conduction is crucial for the design of new materials with improved conductivity. Quasi-elastic neutron scattering (QENS) has been used to probe the mechanism of proton diffusion within a new phosphonate-based metal–organic framework (MOF) material, MFM-500(Ni). QENS suggests that the proton conductivity (4.5 × 10(–4) S/cm at 98% relative humidity and 25 °C) of MFM-500(Ni) is mediated by intrinsic “free diffusion inside a sphere”, representing the first example of such a mechanism observed in MOFs. |
---|