Cargando…

Isolation and Reactivity of Trifluoromethyl Iodonium Salts

[Image: see text] The strategic incorporation of the trifluoromethyl (CF(3)) functionality within therapeutic or agrochemical agents is a proven strategy for altering their associated physicochemical properties (e.g., metabolic stability, lipophilicity, and bioavailability). Electrophilic trifluorom...

Descripción completa

Detalles Bibliográficos
Autores principales: Brantley, Johnathan N., Samant, Andrew V., Toste, F. Dean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882740/
https://www.ncbi.nlm.nih.gov/pubmed/27280169
http://dx.doi.org/10.1021/acscentsci.6b00119
Descripción
Sumario:[Image: see text] The strategic incorporation of the trifluoromethyl (CF(3)) functionality within therapeutic or agrochemical agents is a proven strategy for altering their associated physicochemical properties (e.g., metabolic stability, lipophilicity, and bioavailability). Electrophilic trifluoromethylation has emerged as an important methodology for installing the CF(3) moiety onto an array of molecular architectures, and, in particular, CF(3) λ(3)-iodanes have garnered significant interest because of their unique reactivity and ease of handling. Trifluoromethylations mediated by these hypervalent iodine reagents often require activation through an exogenous Lewis or Brønsted acid; thus, putative intermediates invoked in these transformations are cationic CF(3) iodoniums. These iodoniums have, thus far, eluded isolation and investigation of their innate reactivity (which has encouraged speculation that such species cannot be accessed). A more complete understanding of the mechanistic relevance of CF(3) iodoniums is paramount for the development of new trifluoromethylative strategies involving λ(3)-iodanes. Here, we demonstrate that CF(3) iodonium salts are readily prepared from common λ(3)-iodane precursors and exhibit remarkable persistence under ambient conditions. These reagents are competent electrophiles for a variety of trifluoromethylation reactions, and their reactivity is reminiscent of that observed when CF(3) iodanes are activated using Lewis acids. As such, our results suggest the mechanistic relevance of CF(3) iodonium intermediates in trifluoromethylative processes mediated by λ(3)-iodanes. The isolation of CF(3) iodonium salts also presents the unique opportunity to employ them more generally as mechanistic probes.