Cargando…
Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI
BACKGROUND: To our knowledge, there are no methods allowing for quantification of the spatial distribution of lumbar paravertebral muscle fatty infiltration (FI) in the transverse plane. There is an increasing emphasis on muscle tissues as modifiable factors in lumbar spine health. Population datase...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882844/ https://www.ncbi.nlm.nih.gov/pubmed/27230072 http://dx.doi.org/10.1186/s12891-016-1090-z |
_version_ | 1782434185278914560 |
---|---|
author | Mhuiris, Áine Ni Volken, Thomas Elliott, James M. Hoggarth, Mark Samartzis, Dino Crawford, Rebecca J. |
author_facet | Mhuiris, Áine Ni Volken, Thomas Elliott, James M. Hoggarth, Mark Samartzis, Dino Crawford, Rebecca J. |
author_sort | Mhuiris, Áine Ni |
collection | PubMed |
description | BACKGROUND: To our knowledge, there are no methods allowing for quantification of the spatial distribution of lumbar paravertebral muscle fatty infiltration (FI) in the transverse plane. There is an increasing emphasis on muscle tissues as modifiable factors in lumbar spine health. Population datasets based on conventional T1-weighted (T1-W) magnetic resonance imaging (MRI) represent a valuable resource for examining all spinal tissues, and methods with reliability are needed. The aim of our study was to determine the reliability of a novel method quantifying lumbar paravertebral muscle fat content based on conventional T1-W MRI. METHODS: Axial 3-Tesla T1W MRIs from ten adult subjects (3W, 7M; mean age 52.8 ± SD 7.2 years) were randomly selected from the large prospective cross-sectional Hong Kong Population-based Disc Degeneration Cohort study examining lumbar spine degeneration. The selected sample included subjects with mixed imaging-determined disc degeneration and low back pain history. Two raters with MRI lumbar paravertebral muscle analysis experience (R1 > 250 h and R2 > 1000 h) repeat-measured the image-set a week apart. Multifidus and erector spinae (spinalis, longissimus and iliocostalis) were manually outlined together on a single-slice from the inferior vertebral end-plates of L1 to L5 using a semi-automated, quartile-defining (Q1-4 (medial to lateral) and Q(mean)) MatLab-based programme. Bland-Altman plots and intra-class correlation coefficients (ICC) with 95 % confidence intervals (CI) describe intra- and inter-rater reliability according to lumbar level, quartile, and side, and combined level and quartile. RESULTS: There was good intra- (ICC = 0.88; CI: 0.87–0.90) and inter-rater agreement (ICC = 0.82; CI: 0.80–0.84). Intra-rater values for Q(mean) (ICC; CI) were higher at L5 (0.89; 0.79–0.94) than L1 (0.61; 0.37–0.78). Higher intra-rater values for L1-5 were shown at Q1 (0.93; 0.91–0.95) than Q3 (0.83; 0.78–0.87) or Q4 (0.81; 0.76–0.85), and on the right (0.91; 0.90–0.93) than left (0.85; 0.83–0.88). Similar observations were made for inter-rater values in terms of lumbar level and quartile, with no differences between sides shown. CONCLUSIONS: In our study of ten cases we demonstrate a reliable method to quantify the spatial distribution of fat content in lumbar paravertebral muscles based on T1W MRI. Understanding the geography of fat content in these muscles may offer additional insight in determining and improving spinal health. The clinical relevance and application of this method require testing across various populations to build on the early feasibility established in this study. |
format | Online Article Text |
id | pubmed-4882844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-48828442016-05-28 Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI Mhuiris, Áine Ni Volken, Thomas Elliott, James M. Hoggarth, Mark Samartzis, Dino Crawford, Rebecca J. BMC Musculoskelet Disord Technical Advance BACKGROUND: To our knowledge, there are no methods allowing for quantification of the spatial distribution of lumbar paravertebral muscle fatty infiltration (FI) in the transverse plane. There is an increasing emphasis on muscle tissues as modifiable factors in lumbar spine health. Population datasets based on conventional T1-weighted (T1-W) magnetic resonance imaging (MRI) represent a valuable resource for examining all spinal tissues, and methods with reliability are needed. The aim of our study was to determine the reliability of a novel method quantifying lumbar paravertebral muscle fat content based on conventional T1-W MRI. METHODS: Axial 3-Tesla T1W MRIs from ten adult subjects (3W, 7M; mean age 52.8 ± SD 7.2 years) were randomly selected from the large prospective cross-sectional Hong Kong Population-based Disc Degeneration Cohort study examining lumbar spine degeneration. The selected sample included subjects with mixed imaging-determined disc degeneration and low back pain history. Two raters with MRI lumbar paravertebral muscle analysis experience (R1 > 250 h and R2 > 1000 h) repeat-measured the image-set a week apart. Multifidus and erector spinae (spinalis, longissimus and iliocostalis) were manually outlined together on a single-slice from the inferior vertebral end-plates of L1 to L5 using a semi-automated, quartile-defining (Q1-4 (medial to lateral) and Q(mean)) MatLab-based programme. Bland-Altman plots and intra-class correlation coefficients (ICC) with 95 % confidence intervals (CI) describe intra- and inter-rater reliability according to lumbar level, quartile, and side, and combined level and quartile. RESULTS: There was good intra- (ICC = 0.88; CI: 0.87–0.90) and inter-rater agreement (ICC = 0.82; CI: 0.80–0.84). Intra-rater values for Q(mean) (ICC; CI) were higher at L5 (0.89; 0.79–0.94) than L1 (0.61; 0.37–0.78). Higher intra-rater values for L1-5 were shown at Q1 (0.93; 0.91–0.95) than Q3 (0.83; 0.78–0.87) or Q4 (0.81; 0.76–0.85), and on the right (0.91; 0.90–0.93) than left (0.85; 0.83–0.88). Similar observations were made for inter-rater values in terms of lumbar level and quartile, with no differences between sides shown. CONCLUSIONS: In our study of ten cases we demonstrate a reliable method to quantify the spatial distribution of fat content in lumbar paravertebral muscles based on T1W MRI. Understanding the geography of fat content in these muscles may offer additional insight in determining and improving spinal health. The clinical relevance and application of this method require testing across various populations to build on the early feasibility established in this study. BioMed Central 2016-05-27 /pmc/articles/PMC4882844/ /pubmed/27230072 http://dx.doi.org/10.1186/s12891-016-1090-z Text en © The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Technical Advance Mhuiris, Áine Ni Volken, Thomas Elliott, James M. Hoggarth, Mark Samartzis, Dino Crawford, Rebecca J. Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI |
title | Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI |
title_full | Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI |
title_fullStr | Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI |
title_full_unstemmed | Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI |
title_short | Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI |
title_sort | reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for t1-weighted mri |
topic | Technical Advance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882844/ https://www.ncbi.nlm.nih.gov/pubmed/27230072 http://dx.doi.org/10.1186/s12891-016-1090-z |
work_keys_str_mv | AT mhuirisaineni reliabilityofquantifyingthespatialdistributionoffattyinfiltrationinlumbarparavertebralmusclesusinganewsegmentationmethodfort1weightedmri AT volkenthomas reliabilityofquantifyingthespatialdistributionoffattyinfiltrationinlumbarparavertebralmusclesusinganewsegmentationmethodfort1weightedmri AT elliottjamesm reliabilityofquantifyingthespatialdistributionoffattyinfiltrationinlumbarparavertebralmusclesusinganewsegmentationmethodfort1weightedmri AT hoggarthmark reliabilityofquantifyingthespatialdistributionoffattyinfiltrationinlumbarparavertebralmusclesusinganewsegmentationmethodfort1weightedmri AT samartzisdino reliabilityofquantifyingthespatialdistributionoffattyinfiltrationinlumbarparavertebralmusclesusinganewsegmentationmethodfort1weightedmri AT crawfordrebeccaj reliabilityofquantifyingthespatialdistributionoffattyinfiltrationinlumbarparavertebralmusclesusinganewsegmentationmethodfort1weightedmri |