Cargando…

Local dimension-reduced dynamical spatio-temporal models for resting state network estimation

To overcome the limitations of independent component analysis (ICA), today’s most popular analysis tool for investigating whole-brain spatial activation in resting state functional magnetic resonance imaging (fMRI), we present a new class of local dimension-reduced dynamical spatio-temporal model wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Vieira, Gilson, Amaro, Edson, Baccalá, Luiz A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883146/
https://www.ncbi.nlm.nih.gov/pubmed/27747482
http://dx.doi.org/10.1007/s40708-015-0011-5
Descripción
Sumario:To overcome the limitations of independent component analysis (ICA), today’s most popular analysis tool for investigating whole-brain spatial activation in resting state functional magnetic resonance imaging (fMRI), we present a new class of local dimension-reduced dynamical spatio-temporal model which dispenses the independence assumptions that severely limit deeper connectivity descriptions between spatial components. The new method combines novel concepts of group sparsity with contiguity-constrained clusterization to produce physiologically consistent regions of interest in illustrative fMRI data whose causal interactions may then be easily estimated, something impossible under the usual ICA assumptions.