Cargando…

Local dimension-reduced dynamical spatio-temporal models for resting state network estimation

To overcome the limitations of independent component analysis (ICA), today’s most popular analysis tool for investigating whole-brain spatial activation in resting state functional magnetic resonance imaging (fMRI), we present a new class of local dimension-reduced dynamical spatio-temporal model wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Vieira, Gilson, Amaro, Edson, Baccalá, Luiz A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883146/
https://www.ncbi.nlm.nih.gov/pubmed/27747482
http://dx.doi.org/10.1007/s40708-015-0011-5
_version_ 1782434219829493760
author Vieira, Gilson
Amaro, Edson
Baccalá, Luiz A.
author_facet Vieira, Gilson
Amaro, Edson
Baccalá, Luiz A.
author_sort Vieira, Gilson
collection PubMed
description To overcome the limitations of independent component analysis (ICA), today’s most popular analysis tool for investigating whole-brain spatial activation in resting state functional magnetic resonance imaging (fMRI), we present a new class of local dimension-reduced dynamical spatio-temporal model which dispenses the independence assumptions that severely limit deeper connectivity descriptions between spatial components. The new method combines novel concepts of group sparsity with contiguity-constrained clusterization to produce physiologically consistent regions of interest in illustrative fMRI data whose causal interactions may then be easily estimated, something impossible under the usual ICA assumptions.
format Online
Article
Text
id pubmed-4883146
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-48831462016-08-19 Local dimension-reduced dynamical spatio-temporal models for resting state network estimation Vieira, Gilson Amaro, Edson Baccalá, Luiz A. Brain Inform Article To overcome the limitations of independent component analysis (ICA), today’s most popular analysis tool for investigating whole-brain spatial activation in resting state functional magnetic resonance imaging (fMRI), we present a new class of local dimension-reduced dynamical spatio-temporal model which dispenses the independence assumptions that severely limit deeper connectivity descriptions between spatial components. The new method combines novel concepts of group sparsity with contiguity-constrained clusterization to produce physiologically consistent regions of interest in illustrative fMRI data whose causal interactions may then be easily estimated, something impossible under the usual ICA assumptions. Springer Berlin Heidelberg 2015-02-03 /pmc/articles/PMC4883146/ /pubmed/27747482 http://dx.doi.org/10.1007/s40708-015-0011-5 Text en © The Author(s) 2015 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Article
Vieira, Gilson
Amaro, Edson
Baccalá, Luiz A.
Local dimension-reduced dynamical spatio-temporal models for resting state network estimation
title Local dimension-reduced dynamical spatio-temporal models for resting state network estimation
title_full Local dimension-reduced dynamical spatio-temporal models for resting state network estimation
title_fullStr Local dimension-reduced dynamical spatio-temporal models for resting state network estimation
title_full_unstemmed Local dimension-reduced dynamical spatio-temporal models for resting state network estimation
title_short Local dimension-reduced dynamical spatio-temporal models for resting state network estimation
title_sort local dimension-reduced dynamical spatio-temporal models for resting state network estimation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883146/
https://www.ncbi.nlm.nih.gov/pubmed/27747482
http://dx.doi.org/10.1007/s40708-015-0011-5
work_keys_str_mv AT vieiragilson localdimensionreduceddynamicalspatiotemporalmodelsforrestingstatenetworkestimation
AT amaroedson localdimensionreduceddynamicalspatiotemporalmodelsforrestingstatenetworkestimation
AT baccalaluiza localdimensionreduceddynamicalspatiotemporalmodelsforrestingstatenetworkestimation