Cargando…
Local dimension-reduced dynamical spatio-temporal models for resting state network estimation
To overcome the limitations of independent component analysis (ICA), today’s most popular analysis tool for investigating whole-brain spatial activation in resting state functional magnetic resonance imaging (fMRI), we present a new class of local dimension-reduced dynamical spatio-temporal model wh...
Autores principales: | Vieira, Gilson, Amaro, Edson, Baccalá, Luiz A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883146/ https://www.ncbi.nlm.nih.gov/pubmed/27747482 http://dx.doi.org/10.1007/s40708-015-0011-5 |
Ejemplares similares
-
Spatio-Temporal Fractal Dimension Analysis from Resting State EEG Signals in Parkinson’s Disease
por: Ruiz de Miras, Juan, et al.
Publicado: (2023) -
Spatio-temporal dynamics of resting-state brain networks are associated with migraine disability
por: Zhou, Yan, et al.
Publicado: (2023) -
Brain states govern the spatio-temporal dynamics of resting-state functional connectivity
por: Aedo-Jury, Felipe, et al.
Publicado: (2020) -
Estimation of the Covariance Matrix in Hierarchical Bayesian Spatio-Temporal Modeling via Dimension Expansion
por: Sun, Bin, et al.
Publicado: (2022) -
Data driven analysis of low frequency spatio-temporal dynamics in resting state MRI (rsMRI) data
por: Willis, Martha, et al.
Publicado: (2012)