Cargando…

Analysis of alcoholic EEG signals based on horizontal visibility graph entropy

This paper proposes a novel horizontal visibility graph entropy (HVGE) approach to evaluate EEG signals from alcoholic subjects and controlled drinkers and compare with a sample entropy (SaE) method. Firstly, HVGEs and SaEs are extracted from 1,200 recordings of biomedical signals, respectively. A s...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Guohun, Li, Yan, Wen, Peng (Paul), Wang, Shuaifang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883153/
https://www.ncbi.nlm.nih.gov/pubmed/27747525
http://dx.doi.org/10.1007/s40708-014-0003-x
Descripción
Sumario:This paper proposes a novel horizontal visibility graph entropy (HVGE) approach to evaluate EEG signals from alcoholic subjects and controlled drinkers and compare with a sample entropy (SaE) method. Firstly, HVGEs and SaEs are extracted from 1,200 recordings of biomedical signals, respectively. A statistical analysis method is employed to choose the optimal channels to identify the abnormalities in alcoholics. Five group channels are selected and forwarded to a K-Nearest Neighbour (K-NN) and a support vector machine (SVM) to conduct classification, respectively. The experimental results show that the HVGEs associated with left hemisphere, [Formula: see text] 1, [Formula: see text] 3 and FC5 electrodes, of alcoholics are significantly abnormal. The accuracy of classification with 10-fold cross-validation is 87.5 [Formula: see text] with about three HVGE features. By using just optimal 13-dimension HVGE features, the accuracy is 95.8 [Formula: see text] . In contrast, SaE features associated cannot identify the left hemisphere disorder for alcoholism and the maximum classification ratio based on SaE is just 95.2 [Formula: see text] even using all channel signals. These results demonstrate that the HVGE method is a promising approach for alcoholism identification by EEG signals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40708-014-0003-x) contains supplementary material, which is available to authorized users.