Cargando…
Classification of epileptic EEG signals based on simple random sampling and sequential feature selection
Electroencephalogram (EEG) signals are used broadly in the medical fields. The main applications of EEG signals are the diagnosis and treatment of diseases such as epilepsy, Alzheimer, sleep problems and so on. This paper presents a new method which extracts and selects features from multi-channel E...
Autores principales: | Ghayab, Hadi Ratham Al, Li, Yan, Abdulla, Shahab, Diykh, Mohammed, Wan, Xiangkui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883170/ https://www.ncbi.nlm.nih.gov/pubmed/27747606 http://dx.doi.org/10.1007/s40708-016-0039-1 |
Ejemplares similares
-
Determinant of Covariance Matrix Model Coupled with AdaBoost Classification Algorithm for EEG Seizure Detection
por: Al-Hadeethi, Hanan, et al.
Publicado: (2021) -
Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals
por: Sánchez-Hernández, Sergio E., et al.
Publicado: (2022) -
An Eigenvalues-Based Covariance Matrix Bootstrap Model Integrated With Support Vector Machines for Multichannel EEG Signals Analysis
por: Al-Hadeethi, Hanan, et al.
Publicado: (2022) -
Classification of epileptic seizure using feature selection based on fuzzy membership from EEG signal
por: Lee, Sang-Hong
Publicado: (2021) -
Sample Entropy on Multidistance Signal Level Difference for Epileptic EEG Classification
por: Rizal, Achmad, et al.
Publicado: (2018)