Cargando…

Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic,...

Descripción completa

Detalles Bibliográficos
Autores principales: Pérez, Ramón José, Álvarez, Ignacio, Enguita, José María
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883295/
https://www.ncbi.nlm.nih.gov/pubmed/27128924
http://dx.doi.org/10.3390/s16050604
_version_ 1782434244367220736
author Pérez, Ramón José
Álvarez, Ignacio
Enguita, José María
author_facet Pérez, Ramón José
Álvarez, Ignacio
Enguita, José María
author_sort Pérez, Ramón José
collection PubMed
description This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be 1310 nm. The theoretical calculated values of threshold sensitivity and dynamic range for this prototype are 0.052 °/h and 101.38 dB (from ±1.164 × 10(−5) °/s up to ±78.19 °/s), respectively. The Scale-Factor (SF) non-linearity for this model is 5.404% relative to full scale, this value being obtained from data simulation results.
format Online
Article
Text
id pubmed-4883295
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-48832952016-05-27 Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications Pérez, Ramón José Álvarez, Ignacio Enguita, José María Sensors (Basel) Article This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be 1310 nm. The theoretical calculated values of threshold sensitivity and dynamic range for this prototype are 0.052 °/h and 101.38 dB (from ±1.164 × 10(−5) °/s up to ±78.19 °/s), respectively. The Scale-Factor (SF) non-linearity for this model is 5.404% relative to full scale, this value being obtained from data simulation results. MDPI 2016-04-27 /pmc/articles/PMC4883295/ /pubmed/27128924 http://dx.doi.org/10.3390/s16050604 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pérez, Ramón José
Álvarez, Ignacio
Enguita, José María
Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications
title Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications
title_full Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications
title_fullStr Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications
title_full_unstemmed Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications
title_short Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications
title_sort theoretical design of a depolarized interferometric fiber-optic gyroscope (ifog) on smf-28 single-mode standard optical fiber based on closed-loop sinusoidal phase modulation with serrodyne feedback phase modulation using simulation tools for tactical and industrial grade applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883295/
https://www.ncbi.nlm.nih.gov/pubmed/27128924
http://dx.doi.org/10.3390/s16050604
work_keys_str_mv AT perezramonjose theoreticaldesignofadepolarizedinterferometricfiberopticgyroscopeifogonsmf28singlemodestandardopticalfiberbasedonclosedloopsinusoidalphasemodulationwithserrodynefeedbackphasemodulationusingsimulationtoolsfortacticalandindustrialgradeapplications
AT alvarezignacio theoreticaldesignofadepolarizedinterferometricfiberopticgyroscopeifogonsmf28singlemodestandardopticalfiberbasedonclosedloopsinusoidalphasemodulationwithserrodynefeedbackphasemodulationusingsimulationtoolsfortacticalandindustrialgradeapplications
AT enguitajosemaria theoreticaldesignofadepolarizedinterferometricfiberopticgyroscopeifogonsmf28singlemodestandardopticalfiberbasedonclosedloopsinusoidalphasemodulationwithserrodynefeedbackphasemodulationusingsimulationtoolsfortacticalandindustrialgradeapplications