Cargando…
Cubature Information SMC-PHD for Multi-Target Tracking
In multi-target tracking, the key problem lies in estimating the number and states of individual targets, in which the challenge is the time-varying multi-target numbers and states. Recently, several multi-target tracking approaches, based on the sequential Monte Carlo probability hypothesis density...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883344/ https://www.ncbi.nlm.nih.gov/pubmed/27171088 http://dx.doi.org/10.3390/s16050653 |
Sumario: | In multi-target tracking, the key problem lies in estimating the number and states of individual targets, in which the challenge is the time-varying multi-target numbers and states. Recently, several multi-target tracking approaches, based on the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter, have been presented to solve such a problem. However, most of these approaches select the transition density as the importance sampling (IS) function, which is inefficient in a nonlinear scenario. To enhance the performance of the conventional SMC-PHD filter, we propose in this paper two approaches using the cubature information filter (CIF) for multi-target tracking. More specifically, we first apply the posterior intensity as the IS function. Then, we propose to utilize the CIF algorithm with a gating method to calculate the IS function, namely CISMC-PHD approach. Meanwhile, a fast implementation of the CISMC-PHD approach is proposed, which clusters the particles into several groups according to the Gaussian mixture components. With the constructed components, the IS function is approximated instead of particles. As a result, the computational complexity of the CISMC-PHD approach can be significantly reduced. The simulation results demonstrate the effectiveness of our approaches. |
---|