Cargando…
Application of Machine Learning Techniques to High-Dimensional Clinical Data to Forecast Postoperative Complications
OBJECTIVE: To compare performance of risk prediction models for forecasting postoperative sepsis and acute kidney injury. DESIGN: Retrospective single center cohort study of adult surgical patients admitted between 2000 and 2010. PATIENTS: 50,318 adult patients undergoing major surgery. MEASUREMENTS...
Autores principales: | Thottakkara, Paul, Ozrazgat-Baslanti, Tezcan, Hupf, Bradley B., Rashidi, Parisa, Pardalos, Panos, Momcilovic, Petar, Bihorac, Azra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883761/ https://www.ncbi.nlm.nih.gov/pubmed/27232332 http://dx.doi.org/10.1371/journal.pone.0155705 |
Ejemplares similares
-
Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks
por: Shickel, Benjamin, et al.
Publicado: (2023) -
Deep Multi-Modal Transfer Learning for Augmented Patient Acuity Assessment in the Intelligent ICU
por: Shickel, Benjamin, et al.
Publicado: (2021) -
DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning
por: Shickel, Benjamin, et al.
Publicado: (2019) -
Multi-dimensional patient acuity estimation with longitudinal EHR tokenization and flexible transformer networks
por: Shickel, Benjamin, et al.
Publicado: (2022) -
Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform
por: Ren, Yuanfang, et al.
Publicado: (2022)