Cargando…

Hernandezine, a novel AMPK activator induces autophagic cell death in drug-resistant cancers

Drug resistance hinder most cancer chemotherapies and leads to disease recurrence and poor survival of patients. Resistance of cancer cells towards apoptosis is the major cause of these symptomatic behaviours. Here, we showed that isoquinoline alkaloids, including liensinine, isoliensinine, dauricin...

Descripción completa

Detalles Bibliográficos
Autores principales: Law, Betty Yuen Kwan, Mok, Simon Wing Fai, Chan, Wai Kit, Xu, Su Wei, Wu, An Guo, Yao, Xiao Jun, Wang, Jing Rong, Liu, Liang, Wong, Vincent Kam Wai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884978/
https://www.ncbi.nlm.nih.gov/pubmed/26811496
http://dx.doi.org/10.18632/oncotarget.6980
Descripción
Sumario:Drug resistance hinder most cancer chemotherapies and leads to disease recurrence and poor survival of patients. Resistance of cancer cells towards apoptosis is the major cause of these symptomatic behaviours. Here, we showed that isoquinoline alkaloids, including liensinine, isoliensinine, dauricine, cepharanthine and hernandezine, putatively induce cytotoxicity against a repertoire of cancer cell lines (HeLa, A549, MCF-7, PC3, HepG2, Hep3B and H1299). Proven by the use of apoptosis-resistant cellular models and autophagic assays, such isoquinoline alkaloid-induced cytotoxic effect involves energy- and autophagy-related gene 7 (Atg7)-dependent autophagy that resulted from direct activation of AMP activated protein kinase (AMPK). Hernandezine possess the highest efficacy in provoking such cell death when compared with other examined compounds. We confirmed that isoquinoline alkaloid is structurally varied from the existing direct AMPK activators. In conclusion, isoquinoline alkaloid is a new class of compound that induce autophagic cell death in drug-resistant fibroblasts or cancers by exhibiting its direct activation on AMPK.