Cargando…

Whole transcriptome data analysis of zebrafish mutants affecting muscle development

Formation of the contractile myofibril of the skeletal muscle is a complex process which when perturbed leads to muscular dystrophy. Herein, we provide a mRNAseq dataset on three different zebrafish mutants affecting muscle organization during embryogenesis. These comprise the myosin folding chapero...

Descripción completa

Detalles Bibliográficos
Autores principales: Armant, Olivier, Gourain, Victor, Etard, Christelle, Strähle, Uwe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885013/
https://www.ncbi.nlm.nih.gov/pubmed/27274534
http://dx.doi.org/10.1016/j.dib.2016.05.007
Descripción
Sumario:Formation of the contractile myofibril of the skeletal muscle is a complex process which when perturbed leads to muscular dystrophy. Herein, we provide a mRNAseq dataset on three different zebrafish mutants affecting muscle organization during embryogenesis. These comprise the myosin folding chaperone unc45b (unc45b−/−), heat shock protein 90aa1.1 (hsp90aa1.1−/−) and the acetylcholine esterase (ache−/−) gene. The transcriptome analysis was performed in duplicate experiments at 72 h post-fertilization (hpf) for all three mutants, with two additional times of development (24 hpf and 48 hpf) for unc45b−/−. A total of 20 samples were analyzed by hierarchical clustering for differential gene expression. The data from this study support the observation made in Etard et al. (2015) [1] (http://dx.doi.org/10.1186/s13059-015-0825-8) that a failure to fold myosin activates a unique transcriptional program in the skeletal muscles that is different from that induced in stressed muscle cells.