Cargando…
A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni
MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885823/ https://www.ncbi.nlm.nih.gov/pubmed/27303397 http://dx.doi.org/10.3389/fmicb.2016.00818 |
_version_ | 1782434557268590592 |
---|---|
author | Penny, Christian Grothendick, Beau Zhang, Lin Borror, Connie M. Barbano, Duane Cornelius, Angela J. Gilpin, Brent J. Fagerquist, Clifton K. Zaragoza, William J. Jay-Russell, Michele T. Lastovica, Albert J. Ragimbeau, Catherine Cauchie, Henry-Michel Sandrin, Todd R. |
author_facet | Penny, Christian Grothendick, Beau Zhang, Lin Borror, Connie M. Barbano, Duane Cornelius, Angela J. Gilpin, Brent J. Fagerquist, Clifton K. Zaragoza, William J. Jay-Russell, Michele T. Lastovica, Albert J. Ragimbeau, Catherine Cauchie, Henry-Michel Sandrin, Todd R. |
author_sort | Penny, Christian |
collection | PubMed |
description | MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance detection was increased by 34%. These results suggest that spectrum processing parameters, which are rarely optimized or adjusted, affect the performance of MALDI-TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance screening performance. |
format | Online Article Text |
id | pubmed-4885823 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48858232016-06-14 A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni Penny, Christian Grothendick, Beau Zhang, Lin Borror, Connie M. Barbano, Duane Cornelius, Angela J. Gilpin, Brent J. Fagerquist, Clifton K. Zaragoza, William J. Jay-Russell, Michele T. Lastovica, Albert J. Ragimbeau, Catherine Cauchie, Henry-Michel Sandrin, Todd R. Front Microbiol Microbiology MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance detection was increased by 34%. These results suggest that spectrum processing parameters, which are rarely optimized or adjusted, affect the performance of MALDI-TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance screening performance. Frontiers Media S.A. 2016-05-31 /pmc/articles/PMC4885823/ /pubmed/27303397 http://dx.doi.org/10.3389/fmicb.2016.00818 Text en Copyright © 2016 Penny, Grothendick, Zhang, Borror, Barbano, Cornelius, Gilpin, Fagerquist, Zaragoza, Jay-Russell, Lastovica, Ragimbeau, Cauchie and Sandrin. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Penny, Christian Grothendick, Beau Zhang, Lin Borror, Connie M. Barbano, Duane Cornelius, Angela J. Gilpin, Brent J. Fagerquist, Clifton K. Zaragoza, William J. Jay-Russell, Michele T. Lastovica, Albert J. Ragimbeau, Catherine Cauchie, Henry-Michel Sandrin, Todd R. A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni |
title | A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni |
title_full | A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni |
title_fullStr | A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni |
title_full_unstemmed | A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni |
title_short | A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni |
title_sort | designed experiments approach to optimizing maldi-tof ms spectrum processing parameters enhances detection of antibiotic resistance in campylobacter jejuni |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885823/ https://www.ncbi.nlm.nih.gov/pubmed/27303397 http://dx.doi.org/10.3389/fmicb.2016.00818 |
work_keys_str_mv | AT pennychristian adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT grothendickbeau adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT zhanglin adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT borrorconniem adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT barbanoduane adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT corneliusangelaj adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT gilpinbrentj adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT fagerquistcliftonk adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT zaragozawilliamj adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT jayrussellmichelet adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT lastovicaalbertj adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT ragimbeaucatherine adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT cauchiehenrymichel adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT sandrintoddr adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT pennychristian designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT grothendickbeau designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT zhanglin designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT borrorconniem designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT barbanoduane designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT corneliusangelaj designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT gilpinbrentj designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT fagerquistcliftonk designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT zaragozawilliamj designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT jayrussellmichelet designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT lastovicaalbertj designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT ragimbeaucatherine designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT cauchiehenrymichel designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni AT sandrintoddr designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni |