Cargando…

A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni

MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this...

Descripción completa

Detalles Bibliográficos
Autores principales: Penny, Christian, Grothendick, Beau, Zhang, Lin, Borror, Connie M., Barbano, Duane, Cornelius, Angela J., Gilpin, Brent J., Fagerquist, Clifton K., Zaragoza, William J., Jay-Russell, Michele T., Lastovica, Albert J., Ragimbeau, Catherine, Cauchie, Henry-Michel, Sandrin, Todd R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885823/
https://www.ncbi.nlm.nih.gov/pubmed/27303397
http://dx.doi.org/10.3389/fmicb.2016.00818
_version_ 1782434557268590592
author Penny, Christian
Grothendick, Beau
Zhang, Lin
Borror, Connie M.
Barbano, Duane
Cornelius, Angela J.
Gilpin, Brent J.
Fagerquist, Clifton K.
Zaragoza, William J.
Jay-Russell, Michele T.
Lastovica, Albert J.
Ragimbeau, Catherine
Cauchie, Henry-Michel
Sandrin, Todd R.
author_facet Penny, Christian
Grothendick, Beau
Zhang, Lin
Borror, Connie M.
Barbano, Duane
Cornelius, Angela J.
Gilpin, Brent J.
Fagerquist, Clifton K.
Zaragoza, William J.
Jay-Russell, Michele T.
Lastovica, Albert J.
Ragimbeau, Catherine
Cauchie, Henry-Michel
Sandrin, Todd R.
author_sort Penny, Christian
collection PubMed
description MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance detection was increased by 34%. These results suggest that spectrum processing parameters, which are rarely optimized or adjusted, affect the performance of MALDI-TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance screening performance.
format Online
Article
Text
id pubmed-4885823
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-48858232016-06-14 A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni Penny, Christian Grothendick, Beau Zhang, Lin Borror, Connie M. Barbano, Duane Cornelius, Angela J. Gilpin, Brent J. Fagerquist, Clifton K. Zaragoza, William J. Jay-Russell, Michele T. Lastovica, Albert J. Ragimbeau, Catherine Cauchie, Henry-Michel Sandrin, Todd R. Front Microbiol Microbiology MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance detection was increased by 34%. These results suggest that spectrum processing parameters, which are rarely optimized or adjusted, affect the performance of MALDI-TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance screening performance. Frontiers Media S.A. 2016-05-31 /pmc/articles/PMC4885823/ /pubmed/27303397 http://dx.doi.org/10.3389/fmicb.2016.00818 Text en Copyright © 2016 Penny, Grothendick, Zhang, Borror, Barbano, Cornelius, Gilpin, Fagerquist, Zaragoza, Jay-Russell, Lastovica, Ragimbeau, Cauchie and Sandrin. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Penny, Christian
Grothendick, Beau
Zhang, Lin
Borror, Connie M.
Barbano, Duane
Cornelius, Angela J.
Gilpin, Brent J.
Fagerquist, Clifton K.
Zaragoza, William J.
Jay-Russell, Michele T.
Lastovica, Albert J.
Ragimbeau, Catherine
Cauchie, Henry-Michel
Sandrin, Todd R.
A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni
title A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni
title_full A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni
title_fullStr A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni
title_full_unstemmed A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni
title_short A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni
title_sort designed experiments approach to optimizing maldi-tof ms spectrum processing parameters enhances detection of antibiotic resistance in campylobacter jejuni
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885823/
https://www.ncbi.nlm.nih.gov/pubmed/27303397
http://dx.doi.org/10.3389/fmicb.2016.00818
work_keys_str_mv AT pennychristian adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT grothendickbeau adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT zhanglin adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT borrorconniem adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT barbanoduane adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT corneliusangelaj adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT gilpinbrentj adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT fagerquistcliftonk adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT zaragozawilliamj adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT jayrussellmichelet adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT lastovicaalbertj adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT ragimbeaucatherine adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT cauchiehenrymichel adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT sandrintoddr adesignedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT pennychristian designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT grothendickbeau designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT zhanglin designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT borrorconniem designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT barbanoduane designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT corneliusangelaj designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT gilpinbrentj designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT fagerquistcliftonk designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT zaragozawilliamj designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT jayrussellmichelet designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT lastovicaalbertj designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT ragimbeaucatherine designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT cauchiehenrymichel designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni
AT sandrintoddr designedexperimentsapproachtooptimizingmalditofmsspectrumprocessingparametersenhancesdetectionofantibioticresistanceincampylobacterjejuni